Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Runx1 contributes to neurofibromatosis type 1 neurofibroma formation

Subjects

Abstract

Neurofibromatosis type 1 (NF1) patients are predisposed to neurofibromas but the driver(s) that contribute to neurofibroma formation are not fully understood. By cross comparison of microarray gene lists on human neurofibroma-initiating cells and developed neurofibroma Schwann cells (SCs) we identified RUNX1 overexpression in human neurofibroma initiation cells, suggesting RUNX1 might relate to neurofibroma formation. Immunostaining confirmed RUNX1 protein overexpression in human plexiform neurofibromas. Runx1 overexpression was confirmed in mouse Schwann cell progenitors (SCPs) and mouse neurofibromas at the messenger RNA and protein levels. Genetic inhibition of Runx1 expression by small hairpin RNA or pharmacological inhibition of Runx1 function by a Runx1/Cbfβ interaction inhibitor, Ro5-3335, decreased mouse neurofibroma sphere number in vitro. Targeted genetic deletion of Runx1 in SCs and SCPs delayed mouse neurofibroma formation in vivo. Mechanistically, loss of Nf1 increased embryonic day 12.5 Runx1+/Blbp+ progenitors that enable tumor formation. These results suggest that Runx1 has an important role in Nf1 neurofibroma initiation, and inhibition of RUNX1 function might provide a novel potential therapeutic treatment strategy for neurofibroma patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. McCormick F . Ras signaling and NF1. Curr Opin Genet Dev 1995; 5: 51–55.

    Article  CAS  Google Scholar 

  2. Le LQ, Parada LF . Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 2007; 26: 4609–4616.

    Article  CAS  Google Scholar 

  3. Blatt J, Jaffe R, Deutsch M, Adkins J . Neurofibromatosis and childhood tumors. Cancer 1986; 57: 1225–1229.

    Article  CAS  Google Scholar 

  4. Friedman J . Epidemiology of neurofibromatosis type 1. Am J Med Genet 1999; 89: 1–6.

    Article  CAS  Google Scholar 

  5. Kim HA, Ling B, Ratner N . Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol Cell Biol 1997; 17: 862–872.

    Article  CAS  Google Scholar 

  6. Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME et al. Mouse models of tumor development in neurofibromatosis type 1. Science 1999; 286: 2172–2176.

    Article  CAS  Google Scholar 

  7. Zhu Y, Ghosh P, Charnay P, Burns D, Parada L . Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 2002; 296: 920–922.

    Article  CAS  Google Scholar 

  8. Mayes DA, Rizvi TA, Cancelas JA, Kolasinski NT, Ciraolo GM, Stemmer-Rachamimov AO et al. Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res 2011; 71: 4675–4685.

    Article  CAS  Google Scholar 

  9. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 2008; 13: 105–116.

    Article  CAS  Google Scholar 

  10. Le LQ, Shipman T, Burns DK, Parada LF . Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell 2009; 4: 453–463.

    Article  CAS  Google Scholar 

  11. Jouhilahti EM, Peltonen S, Callens T, Jokinen E, Heape AM, Messiaen L et al. The development of cutaneous neurofibromas. Am J Pathol 2011; 178: 500–505.

    Article  Google Scholar 

  12. Zheng H, Chang L, Patel N, Yang J, Lowe L, Burns DK et al. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 2008; 13: 117–128.

    Article  CAS  Google Scholar 

  13. Nagamachi A, Htun PW, Ma F, Miyazaki K, Yamasaki N, Kanno M et al. A 5' untranslated region containing the IRES element in the Runx1 gene is required for angiogenesis, hematopoiesis and leukemogenesis in a knock-in mouse model. Dev Biol 2010; 345: 226–236.

    Article  CAS  Google Scholar 

  14. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10: 299–304.

    Article  CAS  Google Scholar 

  15. Inoue K, Shiga T, Ito Y . Runx transcription factors in neuronal development. Neural Dev 2008; 3: 20.

    Article  Google Scholar 

  16. Aldskogius H, Berens C, Kanaykina N, Liakhovitskaia A, Medvinsky A, Sandelin M et al. Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells 2009; 27: 1592–1603.

    Article  CAS  Google Scholar 

  17. Simeone A, Daga A, Calabi F . Expression of runt in the mouse embryo. Dev Dyn 1995; 203: 61–70.

    Article  CAS  Google Scholar 

  18. Theriault FM, Nuthall HN, Dong Z, Lo R, Barnabe-Heider F, Miller FD et al. Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J Neurosci 2005; 25: 2050–2061.

    Article  CAS  Google Scholar 

  19. Murthy M, Bocking S, Verginelli F, Stifani S . Transcription factor Runx1 inhibits proliferation and promotes developmental maturation in a selected population of inner olfactory nerve layer olfactory ensheathing cells. Gene 2014; 540: 191–200.

    Article  CAS  Google Scholar 

  20. Chimge NO, Frenkel B . The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 2012; 32: 2121–2130.

    Article  Google Scholar 

  21. Scheitz CJ, Lee TS, McDermitt DJ, Tumbar T . Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J 2012; 31: 4124–4139.

    Article  CAS  Google Scholar 

  22. Planaguma J, Diaz-Fuertes M, Gil-Moreno A, Abal M, Monge M, Garcia A et al. A differential gene expression profile reveals overexpression of RUNX1/AML1 in invasive endometrioid carcinoma. Cancer Res 2004; 64: 8846–8853.

    Article  CAS  Google Scholar 

  23. Scheitz CJ, Tumbar T . New insights into the role of Runx1 in epithelial stem cell biology and pathology. J Cell Biochem 2013; 114: 985–993.

    Article  CAS  Google Scholar 

  24. Williams JP, Wu J, Johansson G, Rizvi TA, Miller SC, Geiger H et al. Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell 2008; 3: 658–669.

    Article  CAS  Google Scholar 

  25. Miller SJ, Jessen WJ, Mehta T, Hardiman A, Sites E, Kaiser S et al. Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med 2009; 1: 236–248.

    Article  CAS  Google Scholar 

  26. Cunningham L, Finckbeiner S, Hyde RK, Southall N, Marugan J, Yedavalli VR et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proc Natl Acad Sci USA 2012; 109: 14592–14597.

    Article  CAS  Google Scholar 

  27. Jaegle M, Ghazvini M, Mandemakers W, Piirsoo M, Driegen S, Levavasseur F et al. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev 2003; 17: 1380–1391.

    Article  CAS  Google Scholar 

  28. Bushweller JH . CBF—a biophysical perspective. Semin Cell Dev Biol 2000; 11: 377–382.

    Article  CAS  Google Scholar 

  29. Motoda L, Osato M, Yamashita N, Jacob B, Chen LQ, Yanagida M et al. Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells 2007; 25: 2976–2986.

    Article  CAS  Google Scholar 

  30. Logan TT, Villapol S, Symes AJ . TGF-beta superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PloS One 2013; 8: e59250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Nancy Ratner for providing the microarray data (supported by NS28840 to NR) and critical review and helpful discussions of the manuscript. This work was supported by a Cincinnati Children’s Hospital Trustee Grant to JW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, X., Yan, X. et al. Runx1 contributes to neurofibromatosis type 1 neurofibroma formation. Oncogene 35, 1468–1474 (2016). https://doi.org/10.1038/onc.2015.207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.207

This article is cited by

Search

Quick links