Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The biology of circulating tumor cells

Subjects

Abstract

Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Metzker ML . Sequencing technologies - the next generation. Nat Rev Genet 2010; 11: 31–46.

    CAS  PubMed  Google Scholar 

  3. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR et alInternational Cancer Genome C. International network of cancer genome projects. Nature 2010; 464: 993–998.

    CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

    Google Scholar 

  5. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333–339.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Uhr JW, Pantel K . Controversies in clinical cancer dormancy. Proc Natl Acad Sci USA 2011; 108: 12396–12400.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 2013; 339: 543–548.

    CAS  PubMed  Google Scholar 

  8. Speicher MR, Pantel K . Tumor signatures in the blood. Nat Biotechnol 2014; 32: 441–443.

    CAS  PubMed  Google Scholar 

  9. Alix-Panabieres C, Pantel K . Circulating tumor cells: liquid biopsy of cancer. Clin Chem 2013; 59: 110–118.

    CAS  PubMed  Google Scholar 

  10. Alix-Panabieres C, Pantel K . Challenges in circulating tumour cell research. Nat Rev Cancer 2014; 14: 623–631.

    CAS  PubMed  Google Scholar 

  11. Haber DA, Velculescu VE . Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 2014; 4: 650–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR . Circulating tumor cells and DNA as liquid biopsies. Genome Med 2013; 5: 73.

    PubMed  PubMed Central  Google Scholar 

  13. Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C . Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol 2014; 11: 129–144.

    CAS  PubMed  Google Scholar 

  14. Yu M, Stott S, Toner M, Maheswaran S, Haber DA . Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 2011; 192: 373–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vanharanta S, Massague J . Origins of metastatic traits. Cancer Cell 2013; 24: 410–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pantel K, Brakenhoff RH . Dissecting the metastatic cascade. Nat Rev Cancer 2004; 4: 448–456.

    CAS  PubMed  Google Scholar 

  17. Bednarz-Knoll N, Alix-Panabieres C, Pantel K . Clinical relevance and biology of circulating tumor cells. Breast Cancer Res 2011; 13: 228.

    PubMed  PubMed Central  Google Scholar 

  18. Klein CA . Parallel progression of primary tumours and metastases. Nat Rev Cancer 2009; 9: 302–312.

    CAS  PubMed  Google Scholar 

  19. Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Juckstock J et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res 2011; 17: 2967–2976.

    PubMed  Google Scholar 

  20. Hüsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al. Systemic spread is an early step in breast cancer. Cancer Cell 2008; 13: 58–68.

    PubMed  Google Scholar 

  21. Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H . Seeding and propagation of untransformed mouse mammary cells in the lung. Science 2008; 321: 1841–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148: 349–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sänger N, Effenberger KE, Riethdorf S, Van Haasteren V, Gauwerky J, Wiegratz I et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer 2011; 129: 2522–2526.

    PubMed  Google Scholar 

  24. He W, Wang H, Hartmann LC, Cheng JX, Low PS . In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci USA 2007; 104: 11760–11765.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guzvic M, Braun B, Ganzer R, Burger M, Nerlich M, Winkler S et al. Combined genome and transcriptome analysis of single disseminated cancer cells from bone marrow of prostate cancer patients reveals unexpected transcriptomes. Cancer Res 2014; 74: 7383–7394.

    CAS  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  27. Labelle M, Begum S, Hynes RO . Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20: 576–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339: 580–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 2014; 16: 992–1003 1001-1015.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tarin D, Thompson EW, Newgreen DF . The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005; 65: 5996–6000; discussion 6000-5991.

    CAS  PubMed  Google Scholar 

  31. Fidler IJ . The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 1973; 9: 223–227.

    CAS  PubMed  Google Scholar 

  32. Liotta LA, Saidel MG, Kleinerman J . The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 1976; 36: 889–894.

    CAS  PubMed  Google Scholar 

  33. Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 2012; 9: 016001.

    PubMed  PubMed Central  Google Scholar 

  34. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 2012; 30: 525–532.

    PubMed  Google Scholar 

  35. Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 2013; 110: 21083–21088.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA 2010; 107: 18392–18397.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Labelle M, Hynes RO . The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2: 1091–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014; 158: 1110–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bailey CK, Mittal MK, Misra S, Chaudhuri G . High motility of triple-negative breast cancer cells is due to repression of plakoglobin gene by metastasis modulator protein SLUG. J Biol Chem 2012; 287: 19472–19486.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Holen I, Whitworth J, Nutter F, Evans A, Brown HK, Lefley DV et al. Loss of plakoglobin promotes decreased cell-cell contact, increased invasion, and breast cancer cell dissemination in vivo. Breast Cancer Res 2012; 14: R86.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pantel K, Passlick B, Vogt J, Stosiek P, Angstwurm M, Seen-Hibler R et al. Reduced expression of plakoglobin indicates an unfavorable prognosis in subsets of patients with non-small-cell lung cancer. J Clin Oncol 1998; 16: 1407–1413.

    CAS  PubMed  Google Scholar 

  42. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004; 10: 6897–6904.

    PubMed  Google Scholar 

  43. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 2013; 31: 539–544.

    CAS  PubMed  Google Scholar 

  44. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007; 450: 1235–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 2004; 10: 8152–8162.

    PubMed  Google Scholar 

  46. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010; 16: 116–122.

    CAS  PubMed  Google Scholar 

  47. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY et al. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol 2009; 20: 1223–1229.

    CAS  PubMed  Google Scholar 

  48. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351: 781–791.

    CAS  PubMed  Google Scholar 

  49. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 2008; 14: 6302–6309.

    CAS  PubMed  Google Scholar 

  50. Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol 2011; 29: 1556–1563.

    PubMed  Google Scholar 

  51. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 2014; 20: 897–903.

    CAS  PubMed  Google Scholar 

  52. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 2013; 5: 180ra148.

    Google Scholar 

  53. Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A'Hern R et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 2009; 69: 2912–2918.

    CAS  PubMed  Google Scholar 

  54. Campos M, Prior C, Warleta F, Zudaire I, Ruiz-Mora J, Catena R et al. Phenotypic and genetic characterization of circulating tumor cells by combining immunomagnetic selection and FICTION techniques. J Histochem Cytochem 2008; 56: 667–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 2008; 359: 366–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 2013; 73: 2965–2975.

    CAS  PubMed  Google Scholar 

  57. Mathiesen RR, Fjelldal R, Liestol K, Due EU, Geigl JB, Riethdorf S et al. High-resolution analyses of copy number changes in disseminated tumor cells of patients with breast cancer. Int J Cancer 2012; 131: E405–E415.

    CAS  PubMed  Google Scholar 

  58. Fiegler H, Geigl JB, Langer S, Rigler D, Porter K, Unger K et al. High resolution array-CGH analysis of single cells. Nucleic Acids Res 2007; 35: e15.

    PubMed  Google Scholar 

  59. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 2012; 148: 873–885.

    CAS  PubMed  Google Scholar 

  60. Zong C, Lu S, Chapman AR, Xie XS . Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 2012; 338: 1622–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Navin NE . Cancer genomics: one cell at a time. Genome Biol 2014; 15: 452.

    PubMed  PubMed Central  Google Scholar 

  62. Van Loo P, Voet T . Single cell analysis of cancer genomes. Curr Opin Genet Dev 2014; 24: 82–91.

    CAS  PubMed  Google Scholar 

  63. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al. Tumour evolution inferred by single-cell sequencing. Nature 2011; 472: 90–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 2014; 512: 155–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C et al. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 2014; 16: 421.

    PubMed  PubMed Central  Google Scholar 

  66. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 2014; 32: 479–484.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sandberg R . Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods 2014; 11: 22–24.

    CAS  PubMed  Google Scholar 

  68. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 2012; 7: e33788.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Seiden MV, Kantoff PW, Krithivas K, Propert K, Bryant M, Haltom E et al. Detection of circulating tumor cells in men with localized prostate cancer. J Clin Oncol 1994; 12: 2634–2639.

    CAS  PubMed  Google Scholar 

  70. Xi L, Nicastri DG, El-Hefnawy T, Hughes SJ, Luketich JD, Godfrey TE . Optimal markers for real-time quantitative reverse transcription PCR detection of circulating tumor cells from melanoma, breast, colon, esophageal, head and neck, and lung cancers. Clin Chem 2007; 53: 1206–1215.

    CAS  PubMed  Google Scholar 

  71. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 2013; 5: 179ra147.

    Google Scholar 

  72. Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2010; 2: 25ra23.

    PubMed  PubMed Central  Google Scholar 

  73. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371: 1028–1038.

    PubMed  PubMed Central  Google Scholar 

  74. Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 2012; 487: 510–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 2014; 8: 1905–1918.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pantel K, Deneve E, Nocca D, Coffy A, Vendrell JP, Maudelonde T et al. Circulating epithelial cells in patients with benign colon diseases. Clin Chem 2012; 58: 936–940.

    CAS  PubMed  Google Scholar 

  77. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 2010; 464: 999–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 2008; 105: 4283–4288.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    CAS  Google Scholar 

  80. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    CAS  PubMed  Google Scholar 

  81. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467: 1114–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467: 1109–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nguyen DX, Bos PD, Massague J . Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274–284.

    CAS  PubMed  Google Scholar 

  85. Wan L, Pantel K, Kang Y . Tumor metastasis: moving new biological insights into the clinic. Nat Med 2013; 19: 1450–1464.

    CAS  PubMed  Google Scholar 

  86. Fischer JC, Niederacher D, Topp SA, Honisch E, Schumacher S, Schmitz N et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc Natl Acad Sci USA 2013; 110: 16580–16585.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chambers AF, Groom AC, MacDonald IC . Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    CAS  PubMed  Google Scholar 

  88. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012; 150: 764–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 2011; 20: 701–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 2011; 121: 1298–1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Oskarsson T, Batlle E, Massague J . Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 2014; 14: 306–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L et al. Tumor self-seeding by circulating cancer cells. Cell 2009; 139: 1315–1326.

    PubMed  PubMed Central  Google Scholar 

  93. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 2014; 156: 1002–1016.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen H, Shah AS, Girgis RE, Grossman SA . Transmission of glioblastoma multiforme after bilateral lung transplantation. J Clin Oncol 2008; 26: 3284–3285.

    PubMed  Google Scholar 

  95. Müller C, Holtschmidt J, Auer M, Heitzer E, Lamszus K, Schulte A et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 2014; 6: 247ra101.

    PubMed  Google Scholar 

  96. Fonkem E, Lun M, Wong ET . Rare phenomenon of extracranial metastasis of glioblastoma. J Clin Oncol 2011; 29: 4594–4595.

    PubMed  Google Scholar 

  97. Seoane J, De Mattos-Arruda L . Escaping out of the brain. Cancer Discov 2014; 4: 1259–1261.

    CAS  PubMed  Google Scholar 

  98. Mandybur TI, Liwnicz BH, Wechsler W . Disseminated (metastatic) tumors in nude mice produced by intravenous injection of cells of human and nonhuman neurogenic tumor lines. Acta Neuropathol 1984; 63: 203–209.

    CAS  PubMed  Google Scholar 

  99. Goss PE, Chambers AF . Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 2010; 10: 871–877.

    CAS  PubMed  Google Scholar 

  100. Kang Y, Pantel K . Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 2013; 23: 573–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pantel K, Alix-Panabieres C . Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep 2014; 3: 584.

    PubMed  PubMed Central  Google Scholar 

  102. Sosa MS, Bragado P, Aguirre-Ghiso JA . Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 2014; 14: 611–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 2013; 15: 807–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014; 345: 216–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lancaster MA, Knoblich JA . Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345: 1247125.

    PubMed  Google Scholar 

  106. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 2014; 159: 163–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014; 159: 176–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Alix-Panabieres C, Vendrell JP, Pelle O, Rebillard X, Riethdorf S, Muller V et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem 2007; 53: 537–539.

    CAS  PubMed  Google Scholar 

  109. Alix-Panabieres C . EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res 2012; 195: 69–76.

    PubMed  Google Scholar 

  110. Deneve E, Riethdorf S, Ramos J, Nocca D, Coffy A, Daures JP et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem 2013; 59: 1384–1392.

    CAS  PubMed  Google Scholar 

  111. Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res 2015; 75: 892–901.

    CAS  PubMed  Google Scholar 

  112. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A, Ametller E et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep 2014; 6: 514–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schwarzenbach H, Hoon DS, Pantel K . Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11: 426–437.

    CAS  PubMed  Google Scholar 

  115. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6: 224ra224.

    Google Scholar 

  116. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368: 1199–1209.

    CAS  PubMed  Google Scholar 

  117. Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer 2013; 133: 346–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kidess E, Jeffrey SS . Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? Genome Med 2013; 5: 70.

    PubMed  PubMed Central  Google Scholar 

  119. Pantel K, Alix-Panabieres C . Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 2013; 73: 6384–6388.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in the laboratory of MRS by the Austrian Science Fund (FWF) (grant#: P20338 and P23284), the Oesterreichische Nationalbank (project#: 15093) and in the laboratory of KP by the ERC Advanced Investigator Grant DISSECT, TRANSCAN ERA-Network:Grant CTC-SCAN and Deutsche Forschungsgemeinschaft (DFG) grant PA 341/19. Both authors are supported by Cancer-ID, a project funded by the Innovative Medicines Joint Undertaking (IMI JU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Pantel or M R Speicher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pantel, K., Speicher, M. The biology of circulating tumor cells. Oncogene 35, 1216–1224 (2016). https://doi.org/10.1038/onc.2015.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.192

This article is cited by

Search

Quick links