Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression

Abstract

Among frequent events in prostate cancer are loss of the tumor-suppressor phosphatase and tensin homologue (PTEN) and overexpression of prostate-specific G-protein-coupled receptor (PSGR), but the potential tumorigenic synergy between these lesions is unknown. Here, we report a new mouse model (PSGR-PtenΔ/Δ) combining prostate-specific loss of Pten with probasin promoter-driven PSGR overexpression. By 12 months PSGR-PtenΔ/Δ mice developed invasive prostate tumors featuring Akt activation and extensive inflammatory cell infiltration. PSGR-PtenΔ/Δ tumors exhibited E-cadherin loss and increased stromal androgen receptor (AR) expression. PSGR overexpression increased LNCaP proliferation, whereas PSGR short hairpin RNA knockdown inhibited proliferation and migration. In conclusion, we demonstrate that PSGR overexpression synergizes with loss of PTEN to accelerate prostate cancer development, and present a novel bigenic mouse model that mimics the human condition, where both PSGR overexpression and loss of PTEN occur concordantly in the majority of advanced prostate cancers, yielding an environment more relevant to studying human prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Giles GG . Epidemiological investigation of prostate cancer. Methods Mol Med 2003; 81: 1–19.

    Article  PubMed  Google Scholar 

  2. Nelson WG, De Marzo AM, Isaacs WB . Prostate cancer. N Engl J Med 2003; 349: 366–381.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshimoto M, Cunha IW, Coudry RA, Fonseca FP, Torres CH, Soares FA et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer 2007; 97: 678–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 2008; 21: 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  5. Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997; 57: 4997–5000.

    CAS  PubMed  Google Scholar 

  6. Shen MM, Abate-Shen C . Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24: 1967–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen MM, Abate-Shen C . Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res 2007; 67: 6535–6538.

    Article  CAS  PubMed  Google Scholar 

  8. Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A et al. Pten dose dictates cancer progression in the prostate. PLoS Biol 2003; 1: E59.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee JT, Lehmann BD, Terrian DM, Chappell WH, Stivala F, Libra M et al. Targeting prostate cancer based on signal transduction and cell cycle pathways. Cell Cycle 2008; 7: 1745–1762.

    Article  CAS  PubMed  Google Scholar 

  10. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009; 41: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weng J, Wang J, Cai Y, Stafford LJ, Mitchell D, Ittmann M et al. Increased expression of prostate-specific G-protein-coupled receptor in human prostate intraepithelial neoplasia and prostate cancers. Int J Cancer 2005; 113: 811–818.

    Article  CAS  PubMed  Google Scholar 

  13. Xia C, Ma W, Wang F, Hua S, Liu M . Identification of a prostate-specific G-protein coupled receptor in prostate cancer. Oncogene 2001; 20: 5903–5907.

    Article  CAS  PubMed  Google Scholar 

  14. Xu LL, Stackhouse BG, Florence K, Zhang W, Shanmugam N, Sesterhenn IA et al. PSGR, a novel prostate-specific gene with homology to a G protein-coupled receptor, is overexpressed in prostate cancer. Cancer Res 2000; 60: 6568–6572.

    CAS  PubMed  Google Scholar 

  15. Xu LL, Sun C, Petrovics G, Makarem M, Furusato B, Zhang W et al. Quantitative expression profile of PSGR in prostate cancer. Prostate Cancer Prostatic Dis 2006; 9: 56–61.

    Article  CAS  PubMed  Google Scholar 

  16. Weng J, Ma W, Mitchell D, Zhang J, Liu M . Regulation of human prostate-specific G-protein coupled receptor, PSGR, by two distinct promoters and growth factors. J Cell Biochem 2005; 96: 1034–1048.

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez M, Luo W, Weng J, Zeng L, Yi Z, Siwko S et al. PSGR promotes prostatic intraepithelial neoplasia and prostate cancer xenograft growth through NF-kappaB. Oncogenesis 2014; 3: e114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101: 811–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB et al. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 2006; 66: 4011–4019.

    Article  CAS  PubMed  Google Scholar 

  22. Vanaja DK, Cheville JC, Iturria SJ, Young CY . Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res 2003; 63: 3877–3882.

    CAS  PubMed  Google Scholar 

  23. Wang J, Weng J, Cai Y, Penland R, Liu M, Ittmann M . The prostate-specific G-protein coupled receptors PSGR and PSGR2 are prostate cancer biomarkers that are complementary to alpha-methylacyl-CoA racemase. Prostate 2006; 66: 847–857.

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4: 209–221.

    Article  CAS  PubMed  Google Scholar 

  25. Russell PJ, Kingsley EA . Human prostate cancer cell lines. Methods Mol Med 2003; 81: 21–39.

    CAS  PubMed  Google Scholar 

  26. MacKenzie L, McCall P, Hatziieremia S, Catlow J, Adams C, McArdle P et al. Nuclear factor kappaB predicts poor outcome in patients with hormone-naive prostate cancer with high nuclear androgen receptor. Hum Pathol 2012; 43: 1491–1500.

    Article  CAS  PubMed  Google Scholar 

  27. McCall P, Bennett L, Ahmad I, Mackenzie LM, Forbes IW, Leung HY et al. NFkappaB signalling is upregulated in a subset of castrate-resistant prostate cancer patients and correlates with disease progression. Br J Cancer 2012; 107: 1554–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanz G, Leray I, Dewaele A, Sobilo J, Lerondel S, Bouet S et al. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation. PLoS One 2014; 9: e85110.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou Y, Bolton EC, Jones JO . Androgens and androgen receptor signaling in prostate tumorigenesis. J Mol Endocrinol 2015; 54: R15–R29.

    Article  CAS  PubMed  Google Scholar 

  30. Niu Y, Altuwaijri S, Yeh S, Lai KP, Yu S, Chuang KH et al. Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci USA 2008; 105: 12188–12193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roy AK, Lavrovsky Y, Song CS, Chen S, Jung MH, Velu NK et al. Regulation of androgen action. Vitam Horm 1999; 55: 309–352.

    Article  CAS  PubMed  Google Scholar 

  32. Cano P, Godoy A, Escamilla R, Dhir R, Onate SA . Stromal-epithelial cell interactions and androgen receptor-coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Res 2007; 67: 511–519.

    Article  CAS  PubMed  Google Scholar 

  33. Wikstrom P, Marusic J, Stattin P, Bergh A . Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate 2009; 69: 799–809.

    Article  PubMed  Google Scholar 

  34. Suh J, Rabson AB . NF-kappaB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem 2004; 91: 100–117.

    Article  CAS  PubMed  Google Scholar 

  35. Cunha GR, Hayward SW, Wang YZ, Ricke WA . Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 2003; 107: 1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA 2008; 105: 12182–12187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lai KP, Yamashita S, Huang CK, Yeh S, Chang C . Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med 2012; 4: 791–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gurel B, Lucia MS, Thompson IM Jr, Goodman PJ, Tangen CM, Kristal AR et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2014; 23: 847–856.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kwon OJ, Zhang L, Ittmann MM, Xin L . Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc Natl Acad Sci USA 2014; 111: E592–E600.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK et al. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 2009; 175: 489–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Michael Ittmann (Baylor College of Medicine) for his insights and suggestions. We thank Dr Fen Wang (Texas A&M Health Science Center) for the gift of the PTENfl/fl Cre mice and for valuable discussions and suggestions, and Dr Dekai Zhang (Texas A&M Health Science Center) for the gift of the RAW264.7 cells. This work was partially supported by grants from the State Key Development Programs of China (2012CB910400), DOD Prostate Cancer Research Program (PCRP, W81XWH-10-1-0612, W81XWH-10-10147) and NIH (5R01CA134731). This work was partially supported by grants from the State Key Development Programs of China (2012CB910400), DOD Prostate Cancer Research Program (PCRP, W81XWH-10-1-0612, W81XWH-10-10147) and NIH (5R01CA134731).

Author Contributions

M Rodriguez: Experimental design, data collection, data analysis, manuscript writing; S Siwko: Experimental design, data analysis, manuscript writing; L Zeng, J Li and Z Yi: Data collection and analysis; M Liu: Overall direction, experimental design and analysis, final approval of completed manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, M., Siwko, S., Zeng, L. et al. Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression. Oncogene 35, 1153–1162 (2016). https://doi.org/10.1038/onc.2015.170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.170

This article is cited by

Search

Quick links