Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

hMENA11a contributes to HER3-mediated resistance to PI3K inhibitors in HER2-overexpressing breast cancer cells

Subjects

Abstract

Human Mena (hMENA), an actin regulatory protein of the ENA/VASP family, cooperates with ErbB receptor family signaling in breast cancer. It is overexpressed in high-risk preneoplastic lesions and in primary breast tumors where it correlates with HER2 overexpression and an activated status of AKT and MAPK. The concomitant overexpression of hMENA and HER2 in breast cancer patients is indicative of a worse prognosis. hMENA is expressed along with alternatively expressed isoforms, hMENA11a and hMENAΔv6 with opposite functions. A novel role for the epithelial-associated hMENA11a isoform in sustaining HER3 activation and pro-survival pathways in HER2-overexpressing breast cancer cells has been identified by reverse phase protein array and validated in vivo in a series of breast cancer tissues. As HER3 activation is crucial in mechanisms of cell resistance to PI3K inhibitors, we explored whether hMENA11a is involved in these resistance mechanisms. The specific hMENA11a depletion switched off the HER3-related pathway activated by PI3K inhibitors and impaired the nuclear accumulation of HER3 transcription factor FOXO3a induced by PI3K inhibitors, whereas PI3K inhibitors activated hMENA11a phosphorylation and affected its localization. At the functional level, we found that hMENA11a sustains cell proliferation and survival in response to PI3K inhibitor treatment, whereas hMENA11a silencing increases molecules involved in cancer cell apoptosis. As shown in three-dimensional cultures, hMENA11a contributes to resistance to PI3K inhibition because its depletion drastically reduced cell viability upon treatment with PI3K inhibitor BEZ235. Altogether, these results indicate that hMENA11a in HER2-overexpressing breast cancer cells sustains HER3/AKT axis activation and contributes to HER3-mediated resistance mechanisms to PI3K inhibitors. Thus, hMENA11a expression can be proposed as a marker of HER3 activation and resistance to PI3K inhibition therapies, to select patients who may benefit from these combined targeted treatments. hMENA11a activity could represent a new target for antiproliferative therapies in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arteaga CL, Engelman JA . ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014; 25: 282–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rexer BN, Arteaga CL . Optimal targeting of HER2-PI3K signaling in breast cancer: mechanistic insights and clinical implications. Cancer Res 2013; 73: 3817–3820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fruman DA, Rommel C . PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13: 140–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 2011; 30: 2547–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011; 19: 58–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chakrabarty A, Sánchez V, Kuba MG, Rinehart C, Arteaga CL . Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci USA 2012; 109: 2718–2723.

    Article  CAS  PubMed  Google Scholar 

  7. Amin DN, Campbell MR, Moasser MM . The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Sem Cell Dev Biol 2010; 21: 944–950.

    Article  CAS  Google Scholar 

  8. Hellyer NJ, Cheng K, Koland JG . ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J 1998; 333: 757–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hellyer NJ, Kim MS, Koland JG . Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor. J Biol Chem 2001; 276: 42153–42161.

    Article  CAS  PubMed  Google Scholar 

  10. Amin DN, Sergina N, Ahuja D, McMahon M, Blair JA, Wang D et al. Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci Transl Med 2010; 2: 16ra7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Olson EN, Nordheim A . Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 2010; 11: 353–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P . Mena a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 1996; 87: 227–239.

    Article  CAS  PubMed  Google Scholar 

  13. Bear JE, Loureiro JJ, Libova I, Fässler R, Wehland J, Gertler FB . Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 2000; 101: 717–728.

    Article  CAS  PubMed  Google Scholar 

  14. Di Modugno F, Mottolese M, Di Benedetto A, Conidi A, Novelli F, Perracchio L et al. The cytoskeleton regulatory protein hMena (ENAH) is overexpressed in human benign breast lesions with high risk of transformation and human epidermal growth factor receptor-2-positive/hormonal receptor-negative tumors. Clin Cancer Res 2006; 12: 1470–1478.

    Article  CAS  PubMed  Google Scholar 

  15. Di Modugno F, Mottolese M, DeMonte L, Trono P, Balsamo M, Conidi A et al. The cooperation between hMena overexpression and HER2 signalling in breast cancer. PLoS One 2010; 5: e15852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Modugno F, DeMonte L, Balsamo M, Bronzi G, Nicotra MR, Alessio M et al. Molecular cloning of hMena (ENAH) and its splice variant hMena 11a: epidermal growth factor increases their expression and stimulates hMena 11a phosphorylation in breast cancer cell lines. Cancer Res 2007; 67: 2657–2665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Urbanelli L, Massini C, Emiliani C, Orlacchio A, Bernardi G, Orlacchio A . Characterization of human Enah gene. Biochim Biophys Acta 2006; 1759: 99–107.

    Article  CAS  PubMed  Google Scholar 

  18. Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H et al. Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase. J Biol Chem 2003; 278: 21685–21692.

    Article  CAS  PubMed  Google Scholar 

  19. Goswami S, Philippar U, Sun D, Patsialou A, Avraham J, Wang W et al. Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin Exp Metastasis 2009; 26: 153–159.

    Article  CAS  PubMed  Google Scholar 

  20. Di Modugno F, Iapicca P, Boudreau A, Mottolese M, Terrenato I, Perracchio L et al. Splicing program of human MENA produces a previously undescribed isoform associated with invasive, mesenchymal-like breast tumors. Proc Natl Acad Sci USA 2012; 109: 19280–19285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knowlden JM, Gee JM, Barrow D, Robertson JF, Ellis IO, Nicholson RI et al. erbB3 recruitment of insulin receptor substrate 1 modulates insulin-like growth factor receptor signalling in oestrogen receptor-positive breast cancer cell lines. Breast Cancer Res 2011; 13: R93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008; 7: 1851–1863.

    Article  CAS  PubMed  Google Scholar 

  23. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  24. Garrett JT, Olivares MG, Rinehart C, Granja-Ingram ND, Sánchez V, Chakrabarty A et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci USA 2011; 108: 5021–5026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shapiro GI, Rodon J, Bedell C, Kwak EL, Baselga J, Braña I et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. Clin Cancer Res 2014; 20: 233–245.

    Article  CAS  PubMed  Google Scholar 

  26. Di Modugno F, Bronzi G, Scanlan MJ, Del Bello D, Cascioli S, Venturo I et al. Human Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8 T-cell immune response. Int J Cancer 2004; 109: 909–918.

    Article  CAS  PubMed  Google Scholar 

  27. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008; 68: 8022–8030.

    Article  CAS  PubMed  Google Scholar 

  28. Faber AC, Corcoran RB, Ebi H, Sequist LV, Waltman BA, Chung E et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov 2011; 1: 352–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bean GR, Ganesan YT, Dong Y, Takeda S, Liu H, Chan PM et al. PUMA and BIM are required for oncogene inactivation-induced apoptosis. Sci Signal 2013; 6: ra20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Howes AL, Chiang GG, Lang ES, Ho CB, Powis G, Vuori K et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 2007; 6: 2505–2514.

    Article  CAS  PubMed  Google Scholar 

  31. Polo ML, Arnoni MV, Riggio M, Wargon V, Lanari C, Novaro V . Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS One 2010; 5: e10786.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007; 1: 84–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991; 352: 73–77.

    Article  CAS  PubMed  Google Scholar 

  34. Amin DN, Sergina N, Lim L, Goga A, Moasser MM . HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells. Biochem J 2012; 447: 417–425.

    Article  CAS  PubMed  Google Scholar 

  35. Vehlow A, Soong D, Vizcay-Barrena G, Bodo C, Law AL, Perera U et al. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J 2013; 32: 2722–2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 2007; 445: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh A, Ye M, Bucur O, Zhu S, Tanya Santos M, Rabinovitz I et al. Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT. Mol Biol Cell 2010; 21: 1140–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B et al. ELM—the database of eukaryotic linear motifs. Nucleic Acids Res 2012; 40: D242–D251.

    Article  CAS  PubMed  Google Scholar 

  39. Boudreau A, Tanner K, Wang D, Geyer FC, Reis-Filho JS, Bissell MJ . 14-3-3σ stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proc Natl Acad Sci USA 2013; 110: E3937–E3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH et al. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci Transl Med 2010; 2: 43ra55.

    PubMed  Google Scholar 

  41. Desouza M, Gunning PW, Stehn JR . The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture 2012; 2: 75–87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. O'Connor L . Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998; 17: 384–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weigelt B, Ghajar CM, Bissell MJ . The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliver Rev 2014; 69-70: 42–51.

    Article  CAS  Google Scholar 

  44. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 2012; 21: 227–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gala K, Chandarlapaty S . Molecular pathways: HER3 targeted therapy. Clin Cancer Res 2014; 20: 1410–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nisticò P, De Berardinis P, Morrone S, Alonzi T, Buono C, Venturo I et al. Generation and characterization of two human alpha/beta T cell clones. Recognizing autologous breast tumor cells through an HLA- and TCR/CD3-independent pathway. J Clin Invest 1994; 94: 1426–1431.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Federici G, Gao X, Slawek J, Arodz T, Shitaye A, Wulfkuhle JD et al. Systems analysis of the NCI-60 cancer cell lines by alignment of protein pathway activation modules with "-OMIC" data fields and therapeutic response signatures. Mol Cancer Res 2013; 11: 676–685.

    Article  CAS  PubMed  Google Scholar 

  48. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  49. Pinto MP, Jacobsen BM, Horwitz KB . An immunohistochemical method to study breast cancer cell subpopulations and their growth regulation by hormones in three-dimensional cultures. Front Endocrinol (Lausanne) 2011; 2: 15.

    Article  Google Scholar 

  50. Morrison MM, Hutchinson K, Williams MM, Stanford JC, Balko JM, Young C et al. ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. J Clin Invest 2013; 123: 4329–4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr C Rinaldo for her helpful suggestions, Dr M Panetta for her support, Dr I Terrenato for statistical analysis of data, Mrs G Falasca for technical support and Mrs MV Sarcone for secretarial assistance. This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) 5x1000 Grants 12182 and 9979 and IG 11631 (to PN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Nisticò.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trono, P., Di Modugno, F., Circo, R. et al. hMENA11a contributes to HER3-mediated resistance to PI3K inhibitors in HER2-overexpressing breast cancer cells. Oncogene 35, 887–896 (2016). https://doi.org/10.1038/onc.2015.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.143

This article is cited by

Search

Quick links