Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells

Abstract

The tumor suppressor serine/threonine kinase 11 (STK11 or LKB1) is mutated in 20–30% of patients with non-small-cell lung cancer (NSCLC). Loss of LKB1-adenosine monophosphate-activated protein kinase (AMPK) signaling confers sensitivity to metabolic inhibition or stress-induced mitochondrial insults. We tested the hypothesis that loss of LKB1 sensitizes NSCLC cells to energetic stress induced by treatment with erlotinib. LKB1-deficient cells exhibited enhanced sensitivity to erlotinib in vitro and in vivo that was associated with alterations in energy metabolism and mitochondrial dysfunction. Loss of LKB1 expression altered the cellular response to erlotinib treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species. Furthermore, erlotinib selectively blocked mammalian target of rapamycin signaling, inhibited cell growth and activated apoptosis in LKB1-deficient cells. Erlotinib treatment also induced AMPK activation despite loss of LKB1 expression, which was partially reduced by the application of a calcium/calmodulin-dependent protein kinase kinase 2 inhibitor (STO-609) or calcium chelator (BAPTA-AM). These findings may have significant implications for the design of novel NSCLC treatments that target dysregulated metabolic and signaling pathways in LKB1-deficient tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Rapp E, Pater JL, Willan A, Cormier Y, Murray N, Evans WK et al. Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer—report of a Canadian multicenter randomized trial. J Clin Oncol 1988; 6: 633–641.

    Article  CAS  PubMed  Google Scholar 

  3. West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R et al. A novel classification of lung cancer into molecular subtypes. PLoS One 2012; 7: e31906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363: 1693–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J et al. Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med 2005; 353: 133–144.

    Article  CAS  PubMed  Google Scholar 

  6. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. Inactivation of LKB1/STK11 Is a common event in adenocarcinomas of the lung. Cancer Res 2002; 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  8. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448: 807–810.

    Article  CAS  PubMed  Google Scholar 

  9. Hardie DG, Ross FA, Hawley SA . AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012; 13: 251–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mihaylova MM, Shaw RJ . The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carretero J, Medina PP, Blanco R, Smit L, Tang M, Roncador G et al. Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 2007; 26: 1616–1625.

    Article  CAS  PubMed  Google Scholar 

  12. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23: 143–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faber AC, Li D, Song Y, Liang M-C, Yeap BY, Bronson RT et al. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci USA 2009; 106: 19503–19508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–13311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma SV, Bell DW, Settleman J, Haber DA . Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–181.

    Article  CAS  PubMed  Google Scholar 

  16. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S et al. Erlotinib in previously treated non–small-cell lung cancer. N Engl J Med 2005; 353: 123–132.

    Article  CAS  PubMed  Google Scholar 

  17. Cappuzzo F, Ciuleanu T, Stelmakh L, Cicenas S, Szczésna A, Juhász E et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol 2010; 11: 521–529.

    Article  CAS  PubMed  Google Scholar 

  18. Garassino MC, Marsoni S, Floriani I . Testing epidermal growth factor receptor mutations in patients with non–small-cell lung cancer to choose chemotherapy: the other side of the coin. J Clin Oncol 2011; 29: 3835–3837.

    Article  PubMed  Google Scholar 

  19. Deng J, Shimamura T, Perera S, Carlson NE, Cai D, Shapiro GI et al. Proapoptotic BH3-Only BCL-2 family protein BIM connects death signaling from epidermal growth factor receptor inhibition to the mitochondrion. Cancer Res 2007; 67: 11867–11875.

    Article  CAS  PubMed  Google Scholar 

  20. Ling Y-H, Lin R, Perez-Soler R . Erlotinib induces mitochondrial-mediated apoptosis in human H3255 non-small-cell lung cancer cells with epidermal growth factor receptorl858r mutation through mitochondrial oxidative phosphorylation-dependent activation of BAX and BAK. Mol Pharmacol 2008; 74: 793–806.

    Article  CAS  PubMed  Google Scholar 

  21. Nakada D, Saunders TL, Morrison SJ . Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468: 653–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y et al. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 2007; 26: 5911–5918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaufman JM, Amann JM, Park K, Arasada RR, Li H, Shyr Y et al. LKB1 loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT. J Thorac Oncol 2014; 9: 794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Schaeybroeck S, Kyula J, Kelly DM, Karaiskou-McCaul A, Stokesberry SA, Van Cutsem E et al. Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non–small cell lung cancer cells. Mol Cancer Ther 2006; 5: 1154–1165.

    Article  CAS  PubMed  Google Scholar 

  25. Tracy S, Mukohara T, Hansen M, Meyerson M, Johnson BE, Jänne PA . Gefitinib induces apoptosis in the EGFRL858R non–small-cell lung cancer cell line H3255. Cancer Res 2004; 64: 7241–7244.

    Article  CAS  PubMed  Google Scholar 

  26. Onozato R, Kosaka T, Achiwa H, Kuwano H, Takahashi T, Yatabe Y et al. LKB1 gene mutations in Japanese lung cancer patients. Cancer Sci 2007; 98: 1747–1751.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Marks K, Cowley GS, Carretero J, Liu Q, Nieland TJF et al. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov 2013; 3: 870–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahoney CL, Choudhury B, Davies H, Edkins S, Greenman C, Haaften G et al. LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br J Cancer 2009; 100: 370–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD, Neumann D et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13: 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  30. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D . Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 2007; 403: 139–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proc Natl Acad Sci USA 2014; 111: 2554–2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA . The Ca2+/Calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 2005; 280: 29060–29066.

    Article  CAS  PubMed  Google Scholar 

  34. Eimer S, Belaud-Rotureau M-A, Airiau K, Jeanneteau M, Laharanne E, Véron N et al. Autophagy inhibition cooperates with erlotinib to induce glioblastoma cell death. Cancer Biol Ther 2011; 11: 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  35. Jeon SM, Chandel NS, Hay N . AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485: 661–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gowans GJ, Hawley SA, Ross FA, Hardie DG . AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 2013; 18: 556–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011; 332: 1433–1435.

    Article  CAS  PubMed  Google Scholar 

  38. Oakhill JS, Chen ZP, Scott JW, Steel R, Castelli LA, Ling N et al. beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci USA 2010; 107: 19237–19241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zannetti A, Iommelli F, Fonti R, Papaccioli A, Sommella J, Lettieri A et al. Gefitinib induction of in vivo detectable signals by Bcl-2/Bcl-xL modulation of inositol trisphosphate receptor type 3. Clin Cancer Res 2008; 14: 5209–5219.

    Article  CAS  PubMed  Google Scholar 

  40. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  41. Grassian AR, Metallo CM, Coloff JL, Stephanopoulos G, Brugge JS . Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev 2011; 25: 1716–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy TA, Young JD . ETA: Robust software for determination of cell specific rates from extracellular time courses. Biotechnol Bioeng 2013; 110: 1748–1758.

    Article  CAS  PubMed  Google Scholar 

  43. Whang YM, Kim YH, Kim JS, Yoo YD . RASSF1A suppresses the c-Jun-NH2-kinase pathway and inhibits cell cycle progression. Cancer Res 2005; 65: 3682–3690.

    Article  CAS  PubMed  Google Scholar 

  44. Park SI, Lee C, Sadler WD, Koh AJ, Jones J, Seo JW et al. Parathyroid hormone–related protein drives a CD11b+Gr1+ cell–mediated positive feedback loop to support prostate cancer growth. Cancer Res 2013; 73: 6574–6583.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH P50 CA090949, DOD W81XWH-12-1-0383, NSF CBET-1105991, and by an award from Uniting Against Lung Cancer. Dr Joshua P. Fessel was also supported by NIH K08 HL121174. The authors thank Dr Changki Lee for his assistance with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Young.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whang, Y., Park, S., Trenary, I. et al. LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells. Oncogene 35, 856–866 (2016). https://doi.org/10.1038/onc.2015.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.140

This article is cited by

Search

Quick links