Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Normal vs cancer thyroid stem cells: the road to transformation

Abstract

Recent investigations in thyroid carcinogenesis have led to the isolation and characterisation of a subpopulation of stem-like cells, responsible for tumour initiation, progression and metastasis. Nevertheless, the cellular origin of thyroid cancer stem cells (SCs) remains unknown and it is still necessary to define the process and the target population that sustain malignant transformation of tissue-resident SCs or the reprogramming of a more differentiated cell. Here, we will critically discuss new insights into thyroid SCs as a potential source of cancer formation in light of the available information on the oncogenic role of genetic modifications that occur during thyroid cancer development. Understanding the fine mechanisms that regulate tumour transformation may provide new ground for clinical intervention in terms of prevention, diagnosis and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    PubMed  Google Scholar 

  2. Kondo T, Ezzat S, Asa SL . Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6: 292–306.

    Article  CAS  PubMed  Google Scholar 

  3. Rivera M, Ghossein RA, Schoder H, Gomez D, Larson SM, Tuttle RM . Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer 2008; 113: 48–56.

    PubMed  Google Scholar 

  4. Nikiforov YE, Nikiforova MN . Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7: 569–580.

    CAS  PubMed  Google Scholar 

  5. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 2000; 289: 1357–1360.

    CAS  PubMed  Google Scholar 

  6. Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 2007; 13: 1161–1170.

    CAS  PubMed  Google Scholar 

  7. Lin RY . Thyroid cancer stem cells. Nat Rev Endocrinol 2011; 7: 609–616.

    CAS  PubMed  Google Scholar 

  8. Gibelli B, El-Fattah A, Giugliano G, Proh M, Grosso E . Thyroid stem cells—danger or resource? Acta Otorhinolaryngol Ital 2009; 29: 290–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Takano T, Amino N . Fetal cell carcinogenesis: a new hypothesis for better understanding of thyroid carcinoma. Thyroid 2005; 15: 432–438.

    PubMed  Google Scholar 

  10. Nikiforova MN, Nikiforov YE . Molecular diagnostics and predictors in thyroid cancer. Thyroid 2009; 19: 1351–1361.

    CAS  PubMed  Google Scholar 

  11. Sastre-Perona A, Santisteban P . Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne) 2012; 3: 31.

    CAS  Google Scholar 

  12. Garcia-Rostan G, Tallini G, Herrero A, D'Aquila TG, Carcangiu ML, Rimm DL . Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res 1999; 59: 1811–1815.

    CAS  PubMed  Google Scholar 

  13. Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X . Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 2005; 103: 2261–2268.

    CAS  PubMed  Google Scholar 

  14. Hardin H, Montemayor-Garcia C, Lloyd RV . Thyroid cancer stem-like cells and epithelial-mesenchymal transition in thyroid cancers. Hum Pathol 2013; 44: 1707–1713.

    CAS  PubMed  Google Scholar 

  15. Nikiforova MN, Ciampi R, Salvatore G, Santoro M, Gandhi M, Knauf JA et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett 2004; 209: 1–6.

    CAS  PubMed  Google Scholar 

  16. Coclet J, Foureau F, Ketelbant P, Galand P, Dumont JE . Cell population kinetics in dog and human adult thyroid. Clin Endocrinol 1989; 31: 655–665.

    CAS  Google Scholar 

  17. Dumont JE, Lamy F, Roger P, Maenhaut C . Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev 1992; 72: 667–697.

    CAS  PubMed  Google Scholar 

  18. Hoshi N, Kusakabe T, Taylor BJ, Kimura S . Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology 2007; 148: 4251–4258.

    CAS  PubMed  Google Scholar 

  19. Zhang P, Zuo H, Nakamura Y, Nakamura M, Wakasa T, Kakudo K . Immunohistochemical analysis of thyroid-specific transcription factors in thyroid tumors. Pathol Int 2006; 56: 240–245.

    CAS  PubMed  Google Scholar 

  20. Takano T . Fetal cell carcinogenesis of the thyroid: theory and practice. Semin Cancer Biol 2007; 17: 233–240.

    CAS  PubMed  Google Scholar 

  21. Nikiforov Y, Gnepp DR . Pediatric thyroid cancer after the Chernobyl disaster. Pathomorphologic study of 84 cases (1991-1992) from the Republic of Belarus. Cancer 1994; 74: 748–766.

    CAS  PubMed  Google Scholar 

  22. Jhiang SM, Sagartz JE, Tong Q, Parker-Thornburg J, Capen CC, Cho JY et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 1996; 137: 375–378.

    CAS  PubMed  Google Scholar 

  23. Vermeulen L, Sprick MR, Kemper K, Stassi G, Medema JP . Cancer stem cells—old concepts, new insights. Cell Death Differ 2008; 15: 947–958.

    CAS  PubMed  Google Scholar 

  24. Thomas D, Friedman S, Lin RY . Thyroid stem cells: lessons from normal development and thyroid cancer. Endocr Relat Cancer 2008; 15: 51–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Inaba M, Yamashita YM . Asymmetric stem cell division: precision for robustness. Cell Stem Cell 2012; 11: 461–469.

    CAS  PubMed  Google Scholar 

  26. Yamashita YM, Yuan H, Cheng J, Hunt AJ . Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2010; 2: a001313.

    PubMed  PubMed Central  Google Scholar 

  27. Morrison SJ, Kimble J . Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441: 1068–1074.

    CAS  PubMed  Google Scholar 

  28. Le Douarin N, Fontaine J, Le Lievre C . New studies on the neural crest origin of the avian ultimobranchial glandular cells–interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry 1974; 38: 297–305.

    CAS  PubMed  Google Scholar 

  29. Van Vliet G . Development of the thyroid gland: lessons from congenitally hypothyroid mice and men. Clin Genet 2003; 63: 445–455.

    CAS  PubMed  Google Scholar 

  30. Klonisch T, Hoang-Vu C, Hombach-Klonisch S . Thyroid stem cells and cancer. Thyroid 2009; 19: 1303–1315.

    PubMed  Google Scholar 

  31. De Felice M, Di Lauro R . Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 2004; 25: 722–746.

    CAS  PubMed  Google Scholar 

  32. Fagman H, Nilsson M . Morphogenetics of early thyroid development. J Mol Endocrinol 2011; 46: R33–R42.

    CAS  PubMed  Google Scholar 

  33. Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM et al. Generation of functional thyroid from embryonic stem cells. Nature 2012; 491: 66–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 2012; 10: 398–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Davies TF, Latif R, Minsky NC, Ma R . Clinical review: the emerging cell biology of thyroid stem cells. J Clin Endocrinol Metab 2011; 96: 2692–2702.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin RY, Kubo A, Keller GM, Davies TF . Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology 2003; 144: 2644–2649.

    CAS  PubMed  Google Scholar 

  37. Arufe MC, Lu M, Lin RY . Differentiation of murine embryonic stem cells to thyrocytes requires insulin and insulin-like growth factor-1. Biochem Biophys Res Commun 2009; 381: 264–270.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma R, Latif R, Davies TF . Thyroid follicle formation and thyroglobulin expression in multipotent endodermal stem cells. Thyroid 2013; 23: 385–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Green MD, Chen A, Nostro MC, d'Souza SL, Schaniel C, Lemischka IR et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 2011; 29: 267–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hannan NR, Fordham RP, Syed YA, Moignard V, Berry A, Bautista R et al. Generation of multipotent foregut stem cells from human pluripotent stem cells. Stem Cell Reports 2013; 1: 293–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brafman DA, Moya N, Allen-Soltero S, Fellner T, Robinson M, McMillen ZL et al. Analysis of SOX2-expressing cell populations derived from human pluripotent stem cells. Stem Cell Reports 2013; 1: 464–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE . Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005; 23: 1534–1541.

    CAS  PubMed  Google Scholar 

  43. Onyshchenko MI, Panyutin IG, Panyutin IV, Neumann RD . Stimulation of cultured h9 human embryonic stem cells with thyroid stimulating hormone does not lead to formation of thyroid-like cells. Stem Cells Int 2012; 2012: 634914.

    PubMed  PubMed Central  Google Scholar 

  44. Burstein DE, Nagi C, Wang BY, Unger P . Immunohistochemical detection of p53 homolog p63 in solid cell nests, papillary thyroid carcinoma, and hashimoto's thyroiditis: A stem cell hypothesis of papillary carcinoma oncogenesis. Hum Pathol 2004; 35: 465–473.

    CAS  PubMed  Google Scholar 

  45. Kusakabe T, Hoshi N, Kimura S . Origin of the ultimobranchial body cyst: T/ebp/Nkx2.1 expression is required for development and fusion of the ultimobranchial body to the thyroid. Dev Dyn 2006; 235: 1300–1309.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ozaki T, Nagashima K, Kusakabe T, Kakudo K, Kimura S . Development of thyroid gland and ultimobranchial body cyst is independent of p63. Lab Invest 2011; 91: 138–146.

    CAS  PubMed  Google Scholar 

  47. Cameselle-Teijeiro J, Preto A, Soares P, Sobrinho-Simoes M . A stem cell role for thyroid solid cell nests. Hum Pathol 2005; 36: 590–591.

    PubMed  Google Scholar 

  48. Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, Soares P, Cameselle-Teijeiro JF, Silva P et al. Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Mod Pathol 2004; 17: 819–826.

    CAS  PubMed  Google Scholar 

  49. Reis-Filho JS, Preto A, Soares P, Ricardo S, Cameselle-Teijeiro J, Sobrinho-Simoes M . p63 expression in solid cell nests of the thyroid: further evidence for a stem cell origin. Mod Pathol 2003; 16: 43–48.

    PubMed  Google Scholar 

  50. Rios Moreno MJ, Galera-Ruiz H, De Miguel M, Lopez MI, Illanes M, Galera-Davidson H . Inmunohistochemical profile of solid cell nest of thyroid gland. Endocrine Pathol 2011; 22: 35–39.

    CAS  Google Scholar 

  51. Okamoto M, Hayase S, Miyakoshi M, Murata T, Kimura S . Stem cell antigen 1-positive mesenchymal cells are the origin of follicular cells during thyroid regeneration. Plos One 2013; 8: e80801.

    PubMed  PubMed Central  Google Scholar 

  52. Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology 2012; 153: 2514–2525.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas T, Nowka K, Lan L, Derwahl M . Expression of endoderm stem cell markers: evidence for the presence of adult stem cells in human thyroid glands. Thyroid 2006; 16: 537–544.

    CAS  PubMed  Google Scholar 

  54. Fierabracci A, Puglisi MA, Giuliani L, Mattarocci S, Gallinella-Muzi M . Identification of an adult stem/progenitor cell-like population in the human thyroid. J Endocrinol 2008; 198: 471–487.

    CAS  PubMed  Google Scholar 

  55. Lan L, Cui D, Nowka K, Derwahl M . Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J Clin Endocrinol Metab 2007; 92: 3681–3688.

    CAS  PubMed  Google Scholar 

  56. Visvader JE . Cells of origin in cancer. Nature 2011; 469: 314–322.

    CAS  PubMed  Google Scholar 

  57. Visvader JE, Lindeman GJ . Stem cells and cancer—the promise and puzzles. Mol Oncol 2010; 4: 369–372.

    PubMed  PubMed Central  Google Scholar 

  58. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011; 108: 7950–7955.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 2011; 9: 357–365.

    CAS  PubMed  Google Scholar 

  60. Zeuner A, De Maria R . Not so lonely at the top for cancer stem cells. Cell Stem Cell 2011; 9: 289–290.

    CAS  PubMed  Google Scholar 

  61. Shahriyari L, Komarova NL . Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? Plos One 2013; 8: e76195.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 2008; 93: 4331–4341.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Todaro M, Iovino F, Eterno V, Cammareri P, Gambara G, Espina V et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res 2010; 70: 8874–8885.

    CAS  PubMed  Google Scholar 

  64. Li W, Reeb AN, Sewell WA, Elhomsy G, Lin RY . Phenotypic characterization of metastatic anaplastic thyroid cancer stem cells. Plos One 2013; 8: e65095.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahn SH, Henderson YC, Williams MD, Lai SY, Clayman GL . Detection of thyroid cancer stem cells in papillary thyroid carcinoma. J Clin Endocrinol Metab 2014; 99: 536–544.

    CAS  PubMed  Google Scholar 

  66. Ailles LE, Weissman IL . Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007; 18: 460–466.

    CAS  PubMed  Google Scholar 

  67. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer research 2006; 66: 9339–9344.

    CAS  PubMed  Google Scholar 

  68. Marcato P, Dean CA, Giacomantonio CA, Lee PW . Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011; 10: 1378–1384.

    CAS  PubMed  Google Scholar 

  69. Carina V, Zito G, Pizzolanti G, Richiusa P, Criscimanna A, Rodolico V et al. Multiple pluripotent stem cell markers in human anaplastic thyroid cancer: the putative upstream role of SOX2. Thyroid 2013; 23: 829–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 24731–24737.

    CAS  PubMed  Google Scholar 

  71. Friedman S, Lu M, Schultz A, Thomas D, Lin RY . CD133+ anaplastic thyroid cancer cells initiate tumors in immunodeficient mice and are regulated by thyrotropin. Plos One 2009; 4: e5395.

    PubMed  PubMed Central  Google Scholar 

  72. Zheng X, Cui D, Xu S . Brabant G, Derwahl M. Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells. Int J Oncol 2010; 37: 307–315.

    CAS  PubMed  Google Scholar 

  73. Tseng LM, Huang PI, Chen YR, Chen YC, Chou YC, Chen YW et al. Targeting signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+ cells. J Pharmacol Exp Ther 2012; 341: 410–423.

    CAS  PubMed  Google Scholar 

  74. Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 2007; 148: 1797–1803.

    CAS  PubMed  Google Scholar 

  75. Malaguarnera R, Frasca F, Garozzo A, Giani F, Pandini G, Vella V et al. Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab 2011; 96: 766–774.

    CAS  PubMed  Google Scholar 

  76. Zito G, Richiusa P, Bommarito A, Carissimi E, Russo L, Coppola A et al. In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. Plos One 2008; 3: e3544.

    PubMed  PubMed Central  Google Scholar 

  77. Ke CC, Liu RS, Yang AH, Liu CS, Chi CW, Tseng LM et al. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy. Eur J Nucl Med Mol Imaging 2013; 40: 61–71.

    CAS  PubMed  Google Scholar 

  78. Liu J, Brown RE . Immunohistochemical detection of epithelialmesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Clin Exp Pathol 2010; 3: 755–762.

    PubMed  PubMed Central  Google Scholar 

  79. Sun Y, Kong W, Falk A, Hu J, Zhou L, Pollard S et al. CD133 (prominin) negative human neural stem cells are clonogenic and tripotent. Plos One 2009; 4: e5498.

    PubMed  PubMed Central  Google Scholar 

  80. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP . Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 2011; 8: 136–147.

    CAS  PubMed  Google Scholar 

  81. Hollier BG, Evans K, Mani SA . The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia 2009; 14: 29–43.

    PubMed  Google Scholar 

  82. Raimondi C, Gianni W, Cortesi E, Gazzaniga P . Cancer stem cells and epithelial-mesenchymal transition: revisiting minimal residual disease. Curr Cancer Drug Targets 2010; 10: 496–508.

    CAS  PubMed  Google Scholar 

  83. Chaffer CL, Weinberg RA . A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.

    CAS  PubMed  Google Scholar 

  84. Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo LL et al. Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol 2013; 43: 113–120.

    CAS  PubMed  Google Scholar 

  85. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 2012; 18: 645–653.

    PubMed  Google Scholar 

  87. Sosa MS, Avivar-Valderas A, Bragado P, Wen HC, Aguirre-Ghiso JA . ERK1/2 and p38alpha/beta signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin Cancer Res 2011; 17: 5850–5857.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cassinelli G, Favini E, Degl'Innocenti D, Salvi A, De Petro G, Pierotti MA et al. RET/PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve Met induction and beta-catenin nuclear translocation. Neoplasia 2009; 11: 10–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hardy RG, Vicente-Duenas C, Gonzalez-Herrero I, Anderson C, Flores T, Hughes S et al. Snail family transcription factors are implicated in thyroid carcinogenesis. Am J Pathol 2007; 171: 1037–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 2007; 104: 2803–2808.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 2009; 69: 8317–8325.

    CAS  PubMed  Google Scholar 

  92. Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S et al. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol 2013; 26: 54–61.

    CAS  PubMed  Google Scholar 

  93. Kebebew E, Peng M, Treseler PA, Clark OH, Duh QY, Ginzinger D et al. Id1 gene expression is up-regulated in hyperplastic and neoplastic thyroid tissue and regulates growth and differentiation in thyroid cancer cells. J Clin Endocrinol Metab 2004; 89: 6105–6111.

    CAS  PubMed  Google Scholar 

  94. Ciarrocchi A, Piana S, Valcavi R, Gardini G, Casali B . Inhibitor of DNA binding-1 induces mesenchymal features and promotes invasiveness in thyroid tumour cells. Eur J Cancer 2011; 47: 934–945.

    CAS  PubMed  Google Scholar 

  95. Deleu S, Savonet V, Behrends J, Dumont JE, Maenhaut C . Study of gene expression in thyrotropin-stimulated thyroid cells by cDNA expression array: ID3 transcription modulating factor as an early response protein and tumor marker in thyroid carcinomas. Exp Cell Res 2002; 279: 62–70.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Association for Cancer Research (AIRC) to GS (AIRC IG 12819). We thank Tatiana Terranova for her editorial assistance and all the colleagues who actively contributed to the completion of this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R De Maria or G Stassi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zane, M., Scavo, E., Catalano, V. et al. Normal vs cancer thyroid stem cells: the road to transformation. Oncogene 35, 805–815 (2016). https://doi.org/10.1038/onc.2015.138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.138

This article is cited by

Search

Quick links