Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells

Subjects

Abstract

Cancer cells feature increased de novo lipogenesis. Sterol regulatory element-binding protein 1 (SREBP1), when presented in its mature form (mSREBP1), enhances lipogenesis by increasing transcription of several of its target genes. Mammalian target of rapamycin (mTOR) complexes, mTORC1 and mTORC2, are master regulators of cellular survival, growth and metabolism. A role for mTORC1 in the regulation of SREBP1 activity has been suggested; however, the connection between mTORC2 and SREBP1 has not been clearly established and hence is the focus of this study. mTOR kinase inhibitors (for example, INK128), which inhibit both mTORC1 and mTORC2, decreased mSREBP1 levels in various cancer cell lines. Knockdown of rictor, but not raptor, also decreased mSREBP1. Consistently, reduced mSREBP1 levels were detected in cells deficient in rictor or Sin1 compared with parent or rictor-deficient cells with re-expression of ectopic rictor. Hence it is mTORC2 inhibition that causes mSREBP1 reduction. As a result, expression of the mSREBP1 target genes acetyl-CoA carboxylase and fatty-acid synthase was suppressed, along with suppressed lipogenesis in cells exposed to INK128. Moreover, mSREBP1 stability was reduced in cells treated with INK128 or rictor knockdown. Inhibition of proteasome, GSK3 or the E3 ubiquitin ligase, FBXW7, prevented mSREBP1 reduction induced by mTORC2 inhibition. Thus mTORC2 inhibition clearly facilitates GSK3-dependent, FBXW7-mediated mSREBP1 degradation, leading to mSREBP1 reduction. Accordingly, we conclude that mTORC2 positively regulates mSREBP1 stability and lipogenesis. Our findings reveal a novel biological function of mTORC2 in the regulation of lipogenesis and warrant further study in this direction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Medes G, Thomas A, Weinhouse S . Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 1953; 13: 27–29.

    CAS  PubMed  Google Scholar 

  2. Santos CR, Schulze A . Lipid metabolism in cancer. FEBS J 2012; 279: 2610–2623.

    Article  CAS  PubMed  Google Scholar 

  3. Baenke F, Peck B, Miess H, Schulze A . Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 2013; 6: 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Griffiths B, Lewis CA, Bensaad K, Ros S, Zhang Q, Ferber EC et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab 2013; 1: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li W, Tai Y, Zhou J, Gu W, Bai Z, Zhou T et al. Repression of endometrial tumor growth by targeting SREBP1 and lipogenesis. Cell Cycle 2012; 11: 2348–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res 2013; 73: 2850–2862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov 2011; 1: 442–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shao W, Espenshade PJ . Expanding roles for SREBP in metabolism. Cell Metab 2012; 16: 414–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Espenshade PJ . SREBPs: sterol-regulated transcription factors. J Cell Sci 2006; 119: 973–976.

    Article  CAS  PubMed  Google Scholar 

  10. Alessi DR, Pearce LR, Garcia-Martinez JM . New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2009; 2: pe27.

    Article  PubMed  Google Scholar 

  11. Sabatini DM . mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006; 6: 729–734.

    Article  CAS  PubMed  Google Scholar 

  12. Ma KL, Liu J, Wang CX, Ni J, Zhang Y, Wu Y et al. Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation. Cardiovasc Res 2013; 100: 450–460.

    Article  CAS  PubMed  Google Scholar 

  13. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bakan I, Laplante M . Connecting mTORC1 signaling to SREBP-1 activation. Curr Opin Lipidol 2012; 23: 226–234.

    Article  CAS  PubMed  Google Scholar 

  15. Lewis CA, Griffiths B, Santos CR, Pende M, Schulze A . Regulation of the SREBP transcription factors by mTORC1. Biochem Soc Trans 2011; 39: 495–499.

    Article  CAS  PubMed  Google Scholar 

  16. Laplante M, Sabatini DM . mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proc Natl Acad Sci USA 2010; 107: 3281–3282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Porstmann T, Santos CR, Lewis C, Griffiths B, Schulze A . A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans 2009; 37: 278–283.

    Article  CAS  PubMed  Google Scholar 

  18. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8: 224–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39: 171–183.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 2012; 15: 725–738.

    Article  CAS  PubMed  Google Scholar 

  21. Yuan M, Pino E, Wu L, Kacergis M, Soukas AA . Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J Biol Chem 2012; 287: 29579–29588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koo J, Yue P, Gal AA, Khuri FR, Sun SY . Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth. Cancer Res 2014; 74: 2555–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bengoechea-Alonso MT, Ericsson J . A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem 2009; 284: 5885–5895.

    Article  CAS  PubMed  Google Scholar 

  24. Punga T, Bengoechea-Alonso MT, Ericsson J . Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding. J Biol Chem 2006; 281: 25278–25286.

    Article  CAS  PubMed  Google Scholar 

  25. Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 2005; 1: 379–391.

    Article  CAS  PubMed  Google Scholar 

  26. Koo J, Wang X, Owonikoko TK, Ramalingam SS, Khuri FR, Sun SY . GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth. Oncotarget e-pub ahead of print 12 March 2015.

  27. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127: 125–137.

    Article  CAS  PubMed  Google Scholar 

  28. Preuss E, Hugle M, Reimann R, Schlecht M, Fulda S . Pan-mammalian target of rapamycin (mTOR) inhibitor AZD8055 primes rhabdomyosarcoma cells for ABT-737-induced apoptosis by down-regulating Mcl-1 protein. J Biol Chem 2013; 288: 35287–35296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu W, Furuta E, Shindo K, Watabe M, Xing F, Pandey PR et al. Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway. Breast Cancer Res Treat 2011; 128: 57–68.

    Article  CAS  PubMed  Google Scholar 

  30. Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2009; 2: ra82.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li X, Chen YT, Hu P, Huang WC . Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol Cancer Ther 2014; 13: 855–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun SY . mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Lett 2013; 340: 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horton JD, Goldstein JL, Brown MS . SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao L, Yue P, Khuri FR, Sun SY . mTOR complex 2 is involved in regulation of Cbl-dependent c-FLIP degradation and sensitivity of TRAIL-induced apoptosis. Cancer Res 2013; 73: 1946–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA . Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 2006; 11: 583–589.

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal NK, Chen CH, Cho H, Boulbes DR, Spooner E, Sarbassov DD . Rictor regulates cell migration by suppressing RhoGDI2. Oncogene 2013; 32: 2521–2526.

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Wang H, Xiong W, Chen Y, Ma Q, Ma J et al. Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining. Reproduction 2006; 132: 485–492.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs B Vogelstein, MA Magnuson, B Su, DD Sarbassov and R Schweppes for providing us with some cell lines used in this work. We are also grateful to Dr A Hammond in our department for editing the manuscript. This study was supported by the NIH/NCI R01 CA118450 (SYS) and R01 CA160522 (SYS) and Halpern Research Scholar award (to SYS). FRK and SYS are Georgia Research Alliance Distinguished Cancer Scientists. SYS is a Halpern Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Sun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Oh, YT., Yue, P. et al. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene 35, 642–650 (2016). https://doi.org/10.1038/onc.2015.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.123

This article is cited by

Search

Quick links