Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The transcriptional modulator BCL6 as a molecular target for breast cancer therapy

Abstract

Inappropriate expression or activation of transcription factors can drive patterns of gene expression, leading to the malignant behavior of breast cancer cells. We have found that the transcriptional repressor BCL6 is highly expressed in breast cancer cell lines, and its locus is amplified in about half of primary breast cancers. To understand how BCL6 regulates gene expression in breast cancer cells, we used chromatin immunoprecipitation followed by deep sequencing to identify the BCL6 binding sites on a genomic scale. This revealed that BCL6 regulates a unique cohort of genes in breast cancer cell lines compared with B-cell lymphomas. Furthermore, BCL6 expression promotes the survival of breast cancer cells, and targeting BCL6 with a peptidomimetic inhibitor leads to apoptosis of these cells. Finally, combining a BCL6 inhibitor and a signal transducer and activator of transcription3 inhibitor provided enhanced cell killing in triple-negative breast cancer cell lines, suggesting that combination therapy may be particularly useful. Thus, targeting BCL6 alone or in conjunction with other signaling pathways may be a useful therapeutic strategy for treating breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Logarajah S, Hunter P, Kraman M, Steele D, Lakhani S, Bobrow L et al. BCL-6 is expressed in breast cancer and prevents mammary epithelial differentiaiton. Oncogene 2003; 22: 5572–5578.

    Article  CAS  PubMed  Google Scholar 

  2. Polo JM, Juszczynski P, Monti S, Cerchietti L, Ye K, Greally JM et al. Transcriptional signature with differential expression of BCL6 target genes accurately identifies BCL6-dependent diffuse large B cell lymphomas. Proc Natl Acad Sci USA 2007; 104: 3207–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ci W, Polo JM, Cerchietti L, Shaknovich R, Wang L, Yang SN et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 2009; 113: 5536–5548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A et al. Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res 2009; 7: 966–976.

    Article  CAS  PubMed  Google Scholar 

  5. Walker SR, Nelson EA, Yeh JE, Pinello L, Yuan GC, Frank DA . STAT5 outcompetes STAT3 to regulate the expression of the oncogenic transcriptional modulator BCL6. Mol Cell Biol 2013; 33: 2879–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bos R, van Diest PJ, van der Groep P, Greijer AE, Hermsen MA, Heijnen I et al. Protein expression of B-cell lymphoma gene 6 (BCL-6) in invasive breast cancer is associated with cyclin D1 and hypoxia-inducible factor-1alpha (HIF-1alpha). Oncogene 2003; 22: 8948–8951.

    Article  CAS  PubMed  Google Scholar 

  7. Polo JM, Ci W, Licht JD, Melnick A . Reversible disruption of BCL6 repression complexes by CD40 signaling in normal and malignant B cells. Blood 2008; 112: 644–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell 2003; 12: 1551–1564.

    Article  CAS  PubMed  Google Scholar 

  9. Polo JM, Dell'Oso T, Ranuncolo SM, Cerchietti L, Beck D, Da Silva GF et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 2004; 10: 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  10. Huynh KD, Fischle W, Verdin E, BCoR Bardwell VJ . a novel corepressor involved in BCL-6 repression. Genes Dev 2000; 14: 1810–1823.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huynh KD, Bardwell VJ . The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17: 2473–2484.

    Article  CAS  PubMed  Google Scholar 

  12. Ghetu AF, Corcoran CM, Cerchietti L, Bardwell VJ, Melnick A, Prive GG . Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell 2008; 29: 384–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parekh S, Polo JM, Shaknovich R, Juszczynski P, Lev P, Ranuncolo SM et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 2007; 110: 2067–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujita N, Jaye DL, Geigerman C, Akyildiz A, Mooney MR, Boss JM et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 2004; 119: 75–86.

    Article  CAS  PubMed  Google Scholar 

  15. Mendez LM, Polo JM, Yu JJ, Krupski M, Ding BB, Melnick A et al. CtBP is an essential corepressor for BCL6 autoregulation. Mol Cell Biol 2008; 28: 2175–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Li Z, Naganuma A, Ye BH . Negative autoregulation of BCL-6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc Natl Acad Sci USA 2002; 99: 15018–15023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cerchietti LC, Yang SN, Shaknovich R, Hatzi K, Polo JM, Chadburn A et al. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 2009; 113: 3397–3405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopediaenables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bereshchenko OR, Gu W, Dalla-Favera R . Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 2002; 32: 606–613.

    Article  CAS  PubMed  Google Scholar 

  20. Walker SR, Nelson EA, Frank DA . STAT5 represses BCL6 expression by binding to a regulatory region frequently mutated in lymphomas. Oncogene 2007; 26: 224–233.

    Article  CAS  PubMed  Google Scholar 

  21. Welboren W-J, van Driel MA, Janssen-Megens EM, van Heeringen SJ, FCGJ Sweep, Span PN et al. ChIP-Seq of ER[alpha] and RNA polymerase II defines genes differentially responding to ligands. EMBO J 2009; 28: 1418–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kwon H, Thierry-Mieg D, Thierry-Mieg J, Kim H-P, Oh J, Tunyaplin C et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 2009; 31: 941–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17: 400–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR et al The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24− stem cell-like breast cancer cells in human tumors. J Clin Invest 2011; 121: 2723–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvarez JV, Febbo PG, Ramaswamy S, Loda M, Richardson A, Frank DA . Identification of a genetic signature of activated signal transducer and activator of transcription3 in human tumors. Cancer Res 2005; 65: 5054–5062.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H et al. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 2008; 112: 5095–5102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wernig G, Kharas MG, Okabe R, Moore SA, Leeman DS, Cullen DE et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008; 13: 311–320.

    Article  CAS  PubMed  Google Scholar 

  28. Lasho TL, Tefferi A, Hood JD, Verstovsek S, Gilliland DG, Pardanani A . TG101348, a JAK2-selective antagonist, inhibits primary hematopoietic cells derived from myeloproliferative disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12 mutations as well as mutation negative patients. Leukemia 2008; 22: 1790–1792.

    Article  CAS  PubMed  Google Scholar 

  29. Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA . MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 2003; 113: 207–219.

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Belguise K, O'Neill CF, Sanchez-Morgan N, Romagnoli M, Eddy SF et al. RelB NF-kappaB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1. Mol Cell Biol 2009; 29: 3832–3844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiRenzo J, Signoretti S, Nakamura N, Rivera-Gonzalez R, Sellers W, Loda M et al. Growth factor requirements and basal phenotype of an immortalized mammary epithelial cell line. Cancer Res 2002; 62: 89–98.

    CAS  PubMed  Google Scholar 

  32. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009; 4: e6146.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121: 2750–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nelson EA, Walker SR, Alvarez JV, Frank DA . Isolation of unique STAT5 targets by chromatin immunoprecipitation-based gene identification. J Biol Chem 2004; 279: 54724–54730.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9: R137.

    Article  PubMed  PubMed Central  Google Scholar 

  37. He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q et al. Nucleosome dynamics define transcriptional enhancers. Nat Genet 2010; 42: 343–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin H, Liu T, Manrai AK, Liu XS . CEAS: cis-regulatory element annotation system. Bioinformatics (Oxford, UK), 2009; 25: 2605–2606.

    Article  CAS  Google Scholar 

  39. Giannopoulou EG, Elemento O . An integrated ChIP-seq analysis platform with customizable workflows. BMC Bioinform 2011; 12: 277.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a BCRF-AACR grant for Translational Breast Cancer Research, and grants from the National Cancer Institute (R01-CA160979), Susan G Komen for the Cure, the Brent Leahey Fund and Friends of the Dana-Farber Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Frank.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, S., Liu, S., Xiang, M. et al. The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene 34, 1073–1082 (2015). https://doi.org/10.1038/onc.2014.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.61

This article is cited by

Search

Quick links