Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-873 regulates ERα transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells

Subjects

A Corrigendum to this article was published on 23 July 2015

This article has been updated

Abstract

miRNAs (microRNAs) are frequently and aberrantly expressed in many cancers. MiR-873 has been revealed to be downregulated in colorectal cancer and glioblastoma. However, its function remains unclear. Here we report that miR-873 is downregulated in breast tumor compared with normal tissue. Enforced expression of miR-873 decreases the transcriptional activity of ER (estrogen receptor)-α but not ERβ through the modulation of ERα phosphorylation in ER-positive breast cancer cells. We also found that miR-873 inhibits breast cancer cell proliferation and tumor growth in nude mice. Reporter gene assays revealed cyclin-dependent kinase 3 (CDK3) as a direct target of miR-873. CDK3 was shown to be overexpressed in breast cancer and phosphorylate ERα at Ser104/116 and Ser118. Furthermore, we found that Mir-873 inhibits ER activity and cell growth via targeting CDK3. Interestingly, miR-873 was observed to be downregulated in tamoxifen-resistant MCF-7/TamR cells, while CDK3 is overexpressed in these cells. More importantly, re-expression of miR-873 reversed tamoxifen resistance in MCF-7/TamR cells. Our data demonstrate that miR-873 is a novel tumor suppressor in ER-positive breast cancer and a potential therapeutic approach for treatment of tamoxifen-resistant breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

  • 23 July 2015

    This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue.

References

  1. Clemons M, Goss P . Estrogen and the risk of breast cancer. N Engl J Med 2001; 344: 276–285.

    Article  CAS  PubMed  Google Scholar 

  2. Yager JD, Davidson NE . Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270–282.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas C, Gustafsson JA . The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 2011; 11: 597–608.

    Article  CAS  PubMed  Google Scholar 

  4. Klinge CM . Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 2001; 29: 2905–2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green KA, Carroll JS . Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 2007; 7: 713–722.

    Article  CAS  PubMed  Google Scholar 

  6. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998; 95: 927–937.

    Article  CAS  PubMed  Google Scholar 

  7. Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y et al. Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 2011; 11: 523–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim K, Thu N, Saville B, Safe S . Domains of estrogen receptor alpha (ERalpha) required for ERalpha/Sp1-mediated activation of GC-rich promoters by estrogens and antiestrogens in breast cancer cells. Mol Endocrinol 2003; 17: 804–817.

    Article  CAS  PubMed  Google Scholar 

  9. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389: 753–758.

    Article  CAS  PubMed  Google Scholar 

  10. Smith CL, Nawaz Z, O’Malley BW . Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 1997; 11: 657–666.

    Article  CAS  PubMed  Google Scholar 

  11. Shang Y, Brown M . Molecular determinants for the tissue specificity of SERMs. Science 2002; 295: 2465–2468.

    Article  CAS  PubMed  Google Scholar 

  12. Manavathi B, Dey O, Gajulapalli VNR, Bhatia RS, Bugide S, Kumar R . Derailed estrogen signaling and breast cancer: an authentic couple. Endocrine Reviews 2013; 34: 1–32.

    Article  CAS  PubMed  Google Scholar 

  13. Nilsson S, Koehler KF, Gustafsson JA . Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov 2011; 10: 778–792.

    Article  CAS  PubMed  Google Scholar 

  14. Riggs BL, Hartmann LC . Selective estrogen-receptor modulators — mechanisms of action and application to clinical practice. N Engl J Med 2003; 348: 618–629.

    Article  CAS  PubMed  Google Scholar 

  15. Abe O, Abe R, Enomoto K, Kikuchi K, Koyama H, Masuda H et al. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–1717.

    Article  Google Scholar 

  16. McCartan D, Bolger JC, Fagan A, Byrne C, Hao Y, Qin L et al. Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine-resistant breast cancer. Cancer Res 2012; 72: 220–229.

    Article  CAS  PubMed  Google Scholar 

  17. Ali S, Coombes RC . Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2002; 2: 101–112.

    Article  PubMed  Google Scholar 

  18. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 2004; 96: 926–935.

    Article  CAS  PubMed  Google Scholar 

  19. Osborne CK, Shou J, Massarweh S, Schiff R . Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 2005; 11: 865s–870s.

    CAS  PubMed  Google Scholar 

  20. Osborne CK, Schiff R . Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011; 62: 233–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wardell SE, Nelson ER, Chao CA, McDonnell DP . Bazedoxifene exhibits antiestrogenic activity in animal models of tamoxifen-resistant breast cancer: implications for treatment of advanced disease. Clin Cancer Res 2013; 19: 2420–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulrane L, McGee SF, Gallagher WM, O’Connor DP . miRNA dysregulation in breast cancer. Cancer Res 2013; 73: 6554–6562.

    Article  CAS  PubMed  Google Scholar 

  23. Nana-Sinkam SP, Croce CM . Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 2013; 93: 98–104.

    Article  CAS  PubMed  Google Scholar 

  24. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 2013; 497: 378–382.

    Article  CAS  PubMed  Google Scholar 

  25. Klinge CM . miRNAs and estrogen action. Trends Endocrinol Metab 2012; 23: 223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 2008; 283: 29897–29903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 2013; 32: 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R et al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res 2011; 71: 5646–5658.

    Article  CAS  PubMed  Google Scholar 

  29. Skalsky RL, Cullen BR . Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS ONE 2011; 6: e24248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 2008; 105: 7004–7009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trowbridge JM, Rogatsky I, Garabedian MJ . Regulation of estrogen receptor transcriptional enhancement by the cyclin A/Cdk2 complex. Proc Natl Acad Sci USA 1997; 94: 10132–10137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng D, Cho YY, Lau AT, Zhang J, Ma WY, Bode AM et al. Cyclin-dependent kinase 3-mediated activating transcription factor 1 phosphorylation enhances cell transformation. Cancer Res 2008; 68: 7650–7660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wesierska-Gadek J, Gritsch D, Zulehner N, Komina O, Maurer M . Roscovitine, a selective CDK inhibitor, reduces the basal and estrogen-induced phosphorylation of ER-alpha in human ER-positive breast cancer cells. J Cell Biochem 2011; 112: 761–772.

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman JT, O'Gorman M, Loi C, Plotka A, Kirkovsky L, Boutros T et al. 76p * a phase 1 open-label fixed-sequence two-period crossover study of the effect of multiple doses of tamoxifen on palbociclib (pd-0332991) pharmacokinetics in healthy male volunteers. Ann Oncol 2014; 25 (Suppl 1): i27.

    Article  Google Scholar 

  35. Cui J, Germer K, Wu T, Wang J, Luo J, Wang SC et al. Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells. Cancer Res 2012; 72: 5625–5634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keeton EK, Brown M . Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-alpha and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 2005; 19: 1543–1554.

    Article  CAS  PubMed  Google Scholar 

  37. Sun X, Jiao X, Pestell TG, Fan C, Qin S, Mirabelli E et al. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene 2013; 33: 4967–4977.

    Article  CAS  PubMed  Google Scholar 

  38. Tian W, Chen J, He H, Deng Y . MicroRNAs and drug resistance of breast cancer: basic evidence and clinical applications. Clin Transl Oncol 2013; 15: 335–342.

    Article  CAS  PubMed  Google Scholar 

  39. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 2013; 154: 311–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bergamaschi A, Katzenellenbogen BS . Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene 2012; 31: 39–47.

    Article  CAS  PubMed  Google Scholar 

  41. de Leeuw R, Neefjes J, Michalides R . A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer 2011; 2011: 232435.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stal O, Linn S et al. Estrogen receptor-alpha phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst 2009; 101: 1725–1729.

    Article  CAS  PubMed  Google Scholar 

  43. Vendrell JA, Bieche I, Desmetz C, Badia E, Tozlu S, Nguyen C et al. Molecular changes associated with the agonist activity of hydroxy-tamoxifen and the hyper-response to estradiol in hydroxy-tamoxifen-resistant breast cancer cell lines. Endocr Relat Cancer 2005; 12: 75–92.

    Article  CAS  PubMed  Google Scholar 

  44. Sarwar N, Kim JS, Jiang J, Peston D, Sinnett HD, Madden P et al. Phosphorylation of ER alpha at serine 118 in primary breast cancer and in tamoxifen-resistant tumours is indicative of a complex role for ER alpha phosphorylation in breast cancer progression. Endocr-Relat Cancer 2006; 13: 851–861.

    Article  CAS  PubMed  Google Scholar 

  45. Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA . Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol 2006; 20: 3120–3132.

    Article  CAS  PubMed  Google Scholar 

  46. Ren S, Rollins BJ . Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 2004; 117: 239–251.

    Article  CAS  PubMed  Google Scholar 

  47. Sutherland RL, Musgrove EA . CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+ disease. Breast Cancer Res 2009; 11: 112.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cicenas J, Valius M . The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2011; 137: 1409–1418.

    Article  CAS  PubMed  Google Scholar 

  49. Ye X, Zhu C, Harper JW . A premature-termination mutation in the Mus musculus cyclin-dependent kinase 3 gene. Proc Natl Acad Sci USA 2001; 98: 1682–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang L, Hu HY, Lin YL, Zhao ZX, Tan L, Yu P et al. CDK3 expression and its clinical significance in human nasopharyngeal carcinoma. Mol Med Rep 2014; 9: 2582–2586.

    Article  CAS  PubMed  Google Scholar 

  51. Bullrich F, MacLachlan TK, Sang N, Druck T, Veronese ML, Allen SL et al. Chromosomal mapping of members of the cdc2 family of protein kinases, cdk3, cdk6, PISSLRE, and PITALRE, and a cdk inhibitor, p27Kip1, to regions involved in human cancer. Cancer Res 1995; 55: 1199–1205.

    CAS  PubMed  Google Scholar 

  52. Zhang D, Jiang P, Xu Q, Zhang X . Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth. J Biol Chem 2011; 286: 17746–17754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shang YF, Hu X, DiRenzo J, Lazar MA, Brown M . Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103: 843–852.

    Article  CAS  PubMed  Google Scholar 

  54. Cui J, Yang Y, Zhang C, Hu P, Kan W, Bai X et al. FBI-1 functions as a novel AR co-repressor in prostate cancer cells. Cell Mol Life Sci 2011; 68: 1091–1103.

    Article  CAS  PubMed  Google Scholar 

  55. Cho YY, Tang F, Yao K, Lu C, Zhu F, Zheng D et al. Cyclin-dependent kinase-3-mediated c-Jun phosphorylation at Ser63 and Ser73 enhances cell transformation. Cancer Res 2009; 69: 272–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mingjun Bi, Anne-Marie Overstreet and Alex Meredith for their advice, discussion and editorial assistance. We thank Dr. Guanxuan Tan and his lab members for reagents and advice. We also thank Bill Evans for editorial support and for improving the English. This study was supported by the National Natural Science Foundation of China (Grant Nos. 81102005 and 31271154) and the National High Technology Research and Development Programme of China (Grant No. 2014AA020516).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Yang, Y., Li, H. et al. MiR-873 regulates ERα transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene 34, 3895–3907 (2015). https://doi.org/10.1038/onc.2014.430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.430

This article is cited by

Search

Quick links