Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PAX3 and ETS1 synergistically activate MET expression in melanoma cells

Subjects

Abstract

Melanoma is a highly aggressive disease that is difficult to treat owing to rapid tumor growth, apoptotic resistance and high metastatic potential. The MET proto-oncogene (MET) tyrosine kinase receptor promotes many of these cellular processes, but while MET is often overexpressed in melanoma, the mechanism driving this overexpression is unknown. As the MET gene is rarely mutated or amplified in melanoma, MET overexpression may be driven to increased activation through promoter elements. In this report, we find that transcription factors PAX3 and ETS1 directly interact to synergistically activate MET expression. Inhibition of PAX3 and ETS1 expression in melanoma cells leads to a significant reduction of MET receptor levels. The 300-bp 5′ proximal MET promoter contains a PAX3 response element and two ETS1 consensus motifs. Although ETS1 can moderately activate both of these sites without cofactors, robust MET promoter activation of the first site is PAX dependent and requires the presence of PAX3, whereas the second site is PAX independent. The induction of MET by ETS1 via this second site is enhanced by hepatocyte growth factor-dependent ETS1 activation, thereby MET indirectly promotes its own expression. We further find that expression of a dominant-negative ETS1 reduces the ability of melanoma cells to grow both in culture and in vivo. Thus, we discover a pathway where ETS1 advances melanoma through the expression of MET via PAX-dependent and -independent mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Oikawa T, Yamada T . Molecular biology of the Ets family of transcription factors. Gene 2003; 303: 11–34.

    Article  CAS  PubMed  Google Scholar 

  2. Keehn CA, Smoller BR, Morgan MB . Expression of the ets-1 proto-oncogene in melanocytic lesions. Mod Pathol 2003; 16: 772–777.

    Article  PubMed  Google Scholar 

  3. Rothhammer T, Hahne JC, Florin A, Poser I, Soncin F, Wernert N et al. The Ets-1 transcription factor is involved in the development and invasion of malignant melanoma. Cell Mol Life Sci 2004; 61: 118–128.

    Article  CAS  PubMed  Google Scholar 

  4. Dong L, Jiang CC, Thorne RF, Croft A, Yang F, Liu H et al. Ets-1 mediates upregulation of Mcl-1 downstream of XBP-1 in human melanoma cells upon ER stress. Oncogene 2011; 30: 3716–3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tajima A, Miyamoto Y, Kadowaki H, Hayashi M . Mouse integrin alphav promoter is regulated by transcriptional factors Ets and Sp1 in melanoma cells. Biochim Biophys Acta 2000; 1492: 377–384.

    Article  CAS  PubMed  Google Scholar 

  6. Natali PG, Nicotra MR, Di Renzo MF, Prat M, Bigotti A, Cavaliere R et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 1993; 68: 746–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Puri N, Ahmed S, Janamanchi V, Tretiakova M, Zumba O, Krausz T et al. c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res 2007; 13: 2246–2253.

    Article  CAS  PubMed  Google Scholar 

  8. Saitoh K, Takahashi H, Sawada N, Parsons PG . Detection of the c-met proto-oncogene product in normal skin and tumours of melanocytic origin. J Pathol 1994; 174: 191–199.

    Article  CAS  PubMed  Google Scholar 

  9. Gambarotta G, Boccaccio C, Giordano S, Ando M, Stella MC, Comoglio PM . Ets up-regulates MET transcription. Oncogene 1996; 13: 1911–1917.

    CAS  PubMed  Google Scholar 

  10. Horikawa T, Sheen TS, Takeshita H, Sato H, Furukawa M, Yoshizaki T . Induction of c-Met proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with cervical lymph node metastasis of nasopharyngeal carcinoma. Am J Pathol 2001; 159: 27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang Y, Xu W, Lu J, He F, Yang X . Invasiveness of hepatocellular carcinoma cell lines: contribution of hepatocyte growth factor, c-met, and transcription factor Ets-1. Biochem Biophys Res Commun 2001; 286: 1123–1130.

    Article  CAS  PubMed  Google Scholar 

  12. Tomita N, Morishita R, Taniyama Y, Koike H, Aoki M, Shimizu H et al. Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation 2003; 107: 1411–1417.

    Article  CAS  PubMed  Google Scholar 

  13. Saeki H, Kuwano H, Kawaguchi H, Ohno S, Sugimachi K . Expression of ets-1 transcription factor is correlated with penetrating tumor progression in patients with squamous cell carcinoma of the esophagus. Cancer 2000; 89: 1670–1676.

    Article  CAS  PubMed  Google Scholar 

  14. Mascarenhas JB, Littlejohn EL, Wolsky RJ, Young KP, Nelson M, Salgia R et al. PAX3 and SOX10 activate MET receptor expression in melanoma. Pigment Cell Melanoma Res 2010; 23: 225–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kubic JD, Young KP, Plummer RS, Ludvik AE, Lang D . Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 2008; 21: 627–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He SJ, Stevens G, Braithwaite AW, Eccles MR . Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity. Mol Cancer Ther 2005; 4: 996–1003.

    Article  CAS  PubMed  Google Scholar 

  17. Medic S, Ziman M . PAX3 expression in normal skin melanocytes and melanocytic lesions (naevi and melanomas). PLoS ONE 2010; 5: e9977.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Plummer RS, Shea CR, Nelson M, Powell SK, Freeman DM, Dan CP et al. PAX3 expression in primary melanomas and nevi. Mod Pathol 2008; 21: 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scholl FA, Kamarashev J, Murmann OV, Geertsen R, Dummer R, Schafer BW . PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res 2001; 61: 823–826.

    CAS  PubMed  Google Scholar 

  20. Bonvin E, Falletta P, Shaw H, Delmas V, Goding CR . A phosphatidylinositol 3-kinase-Pax3 axis regulates Brn-2 expression in melanoma. Mol Cell Biol 2012; 32: 4674–4683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu F, Cao J, Wu J, Sullivan K, Shen J, Ryu B et al. Stat3-targeted therapies overcome the acquired resistance to vemurafenib in melanomas. J Invest Dermatol 2013; 133: 2041–2049.

    Article  CAS  PubMed  Google Scholar 

  22. Paumelle R, Tulasne D, Kherrouche Z, Plaza S, Leroy C, Reveneau S et al. Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene 2002; 21: 2309–2319.

    Article  CAS  PubMed  Google Scholar 

  23. Wasylyk C, Bradford AP, Gutierrez-Hartmann A, Wasylyk B . Conserved mechanisms of Ras regulation of evolutionary related transcription factors, Ets1 and Pointed P2. Oncogene 1997; 14: 899–913.

    Article  CAS  PubMed  Google Scholar 

  24. Yang BS, Hauser CA, Henkel G, Colman MS, Van Beveren C, Stacey KJ et al. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol 1996; 16: 538–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seidel JJ, Graves BJ . An ERK2 docking site in the Pointed domain distinguishes a subset of ETS transcription factors. Genes Dev 2002; 16: 127–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gambarotta G, Pistoi S, Giordano S, Comoglio PM, Santoro C . Structure and inducible regulation of the human MET promoter. J Biol Chem 1994; 269: 12852–12857.

    CAS  PubMed  Google Scholar 

  27. Karim FD, Urness LD, Thummel CS, Klemsz MJ, McKercher SR, Celada A et al. The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence. Genes Dev 1990; 4: 1451–1453.

    Article  CAS  PubMed  Google Scholar 

  28. Nye JA, Petersen JM, Gunther CV, Jonsen MD, Graves BJ . Interaction of murine ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Genes Dev 1992; 6: 975–990.

    Article  CAS  PubMed  Google Scholar 

  29. Woods DB, Ghysdael J, Owen MJ . Identification of nucleotide preferences in DNA sequences recognised specifically by c-Ets-1 protein. Nucleic Acids Res 1992; 20: 699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fisher RJ, Mavrothalassitis G, Kondoh A, Papas TS . High-affinity DNA-protein interactions of the cellular ETS1 protein: the determination of the ETS binding motif. Oncogene 1991; 6: 2249–2254.

    CAS  PubMed  Google Scholar 

  31. Fitzsimmons D, Hodsdon W, Wheat W, Maira S, Wasylyk B, Hagman J . Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary comlexes on a B-cell-specific promoter. Genes Dev 1996; 10: 2198–2211.

    Article  CAS  PubMed  Google Scholar 

  32. Fitzsimmons D, Lukin K, Lutz R, Garvie CW, Wolberger C, Hagman J . Highly cooperative recruitment of Ets-1 and release of autoinhibition by Pax5. J Mol Biol 2009; 392: 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garvie CW, Hagman J, Wolberger C . Structural studies of Ets-1/Pax5 complex formation on DNA. Mol Cell 2001; 8: 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  34. Wheat W, Fitzsimmons D, Lennox H, Krautkramer SR, Gentile LN, McIntosh LP et al. The highly conserved beta-hairpin of the paired DNA-binding domain is required for assembly of Pax-Ets ternary complexes. Mol Cell Biol 1999; 19: 2231–2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL . Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 1996; 93: 4213–4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato T, Furukawa K . Sequential action of Ets-1 and Sp1 in the activation of the human beta-1,4-galactosyltransferase V gene involved in abnormal glycosylation characteristic of cancer cells. J Biol Chem 2007; 282: 27702–27712.

    Article  CAS  PubMed  Google Scholar 

  37. Holterman CE, Franovic A, Payette J, Lee S . ETS-1 oncogenic activity mediated by transforming growth factor alpha. Cancer Res 2010; 70: 730–740.

    Article  CAS  PubMed  Google Scholar 

  38. Nakano T, Abe M, Tanaka K, Shineha R, Satomi S, Sato Y . Angiogenesis inhibition by transdominant mutant Ets-1. J Cell Physiol 2000; 184: 255–262.

    Article  CAS  PubMed  Google Scholar 

  39. Beuret L, Flori E, Denoyelle C, Bille K, Busca R, Picardo M et al. Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J Biol Chem 2007; 282: 14140–14147.

    Article  CAS  PubMed  Google Scholar 

  40. McGill GG, Haq R, Nishimura EK, Fisher DE . c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem 2006; 281: 10365–10373.

    Article  CAS  PubMed  Google Scholar 

  41. Maier H, Ostraat R, Parenti S, Fitzsimmons D, Abraham LJ, Garvie CW et al. Requirements for selective recruitment of Ets proteins and activation of mb-1/Ig-alpha gene transcription by Pax-5 (BSAP). Nucleic Acids Res 2003; 31: 5483–5489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sahin A, Vercamer C, Kaminski A, Fuchs T, Florin A, Hahne JC et al. Dominant-negative inhibition of Ets 1 suppresses tumor growth, invasion and migration in rat C6 glioma cells and reveals differentially expressed Ets 1 target genes. Int J Oncol 2009; 34: 377–389.

    CAS  PubMed  Google Scholar 

  43. Mattia G, Errico MC, Felicetti F, Petrini M, Bottero L, Tomasello L et al. Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma. Pigment Cell Melanoma Res 2011; 24: 953–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pinner S, Jordan P, Sharrock K, Bazley L, Collinson L, Marais R et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res 2009; 69: 7679–77.

    Article  Google Scholar 

  46. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487: 500–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lang D, Epstein JA . Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 2003; 12: 937–945.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Yang J, Li Y, Liu Y . Both Sp1 and Smad participate in mediating TGF-beta1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 2005; 288: F16–F26.

    Article  CAS  PubMed  Google Scholar 

  49. Stella MC, Trusolino L, Pennacchietti S, Comoglio PM . Negative feedback regulation of Met-dependent invasive growth by Notch. Mol Cell Biol 2005; 25: 3982–3996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Ravi Salgia, Eric Svensson and Jonathan Epstein for providing material and/or intellectual support for this project. This work was supported by grants and financial support from the University of Chicago Cancer Center Pilot program (P30-CA014599), American Cancer Society (RSG-CSM-121505), Friends of Dermatology-University of Chicago, The Wendy Will Chase Foundation and the National Institutes of Health (R01CA130202 and R01AR062547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Lang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubic, J., Little, E., Lui, J. et al. PAX3 and ETS1 synergistically activate MET expression in melanoma cells. Oncogene 34, 4964–4974 (2015). https://doi.org/10.1038/onc.2014.420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.420

This article is cited by

Search

Quick links