Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth

Subjects

Abstract

There is controversy over the role of glycogen synthase kinase-3 (GSK-3) in cancer progression. Recent work has implicated GSK-3 in the regulation of mammalian target of rapamycin (mTOR), a known player in malignant transformation. Autophagy, a self-degradation pathway, is inhibited by mTOR and is tightly associated with cell survival and tumor growth. Here we show that GSK-3 suppresses autophagy via mTOR complex-1 (mTORC1) and lysosomal regulation. We show that overexpression of GSK-3 isoforms (GSK-3α and GSK-3β) activated mTORC1 and suppressed autophagy in MCF-7 human breast cancer cells as indicated by reduced beclin-1 levels and upregulation of sequestosome 1 (p62/SQSTM1). Further, overexpression of GSK-3 increased the number of autophagosomes and inhibited autophagic flux. This activity was directly related to reduced lysosomal acidification triggered by GSK-3 (in which GSK-3β has a stronger impact). We found that lysosomal acidification is reduced in MCF-7 cells that also exhibit increased levels of autophagosomes and p62/SQSTM1 and increased activity of mTORC1. Subsequently, treating cells with GSK-3 inhibitors restored lysosomal acidification, enhanced autophagic flux and inhibited mTORC1. Furthermore, GSK-3 inhibitors inhibited cell proliferation. We provide evidence that GSK3-mediated mTORC1 activity and GSK-3-mediated lysosomal acidification occur via distinct pathways, yet both mTORC1 and lysosomes control cell growth. Finally, we show that GSK-3-reduced lysosomal acidification inhibits endocytic clearance as demonstrated by reduced endocytic degradation of the epidermal growth factor receptor. Taken together, our study places GSK-3 as a key regulator coordinating cellular homeostasis. GSK-3 inhibitors may be useful in targeting mTORC1 and lysosomal acidification for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Grimes CA, Jope RS . The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001; 65: 391–426.

    CAS  PubMed  Google Scholar 

  2. Eldar-Finkelman H . Glycogen synthase kinase-3: an emerging therapeutic target. Trend Mol Med 2002; 8: 126–132.

    CAS  Google Scholar 

  3. Doble BW, Woodgett JR . GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003; 116: 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  4. Hur EM, Zhou FQ . GSK3 signalling in neural development. Nat Rev Neurosci 2010; 11: 539–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jope RS, Yuskaitis CJ, Beurel E . Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 2007; 32: 577–595.

    CAS  PubMed  Google Scholar 

  6. Woodgett JR . Molecular cloning and expression of glycogen synthase kinase-3/factorA. EMBO J 1990; 9: 2431–2438.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Eldar-Finkelman H, Martinez A . GSK-3 inhibitors: preclinical and clinical focus on CNS. Front Mol Neurosci 2011; 4: 32.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernandez F, Lucas JJ, Avila J . GSK3 and tau: two convergence points in Alzheimer's disease. J Alzheimers Dis 2013; 33: S141–S144.

    PubMed  Google Scholar 

  9. Ougolkov AV, Billadeau DD . Targeting GSK-3: a promising approach for cancer therapy? Future Oncol 2006; 2: 91–100.

    CAS  PubMed  Google Scholar 

  10. Patel S, Woodgett J . Glycogen synthase kinase-3 and cancer: good cop, bad cop? Cancer Cell 2008; 14: 351–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Birch NW, Zeleznik-Le NJ . Glycogen synthase kinase-3 and leukemia: restoring the balance. Cancer Cell 2010; 17: 529–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J et al. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul 2014; 54: 176–196.

    CAS  PubMed  Google Scholar 

  13. Manoukian AS, Woodgett JR . Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 2002; 84: 203–229.

    CAS  PubMed  Google Scholar 

  14. Wu D, Pan W . GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2011; 35: 161–168.

    CAS  Google Scholar 

  15. Polakis P . The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17: 45–51.

    CAS  PubMed  Google Scholar 

  16. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W et al. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 2008; 68: 6643–6651.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Q, Yang J, Han S, Liu J, Holzbeierlein J, Thrasher JB et al. Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate 2011; 71: 835–845.

    CAS  PubMed  Google Scholar 

  18. Aguilar-Morante D, Morales-Garcia JA, Sanz-SanCristobal M, Garcia-Cabezas MA, Santos A, Perez-Castillo A . Inhibition of glioblastoma growth by the thiadiazolidinone compound TDZD-8. PLoS ONE 2010; 5: e13879.

    PubMed  PubMed Central  Google Scholar 

  19. Remsing Rix LL, Kuenzi BM, Luo Y, Remily-Wood E, Kinose F, Wright G et al. GSK3 alpha and beta are new functionally relevant targets of tivantinib in lung cancer cells. ACS Chem Biol 2013; 9: 353–358.

    PubMed  PubMed Central  Google Scholar 

  20. Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD . Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res 2005; 65: 2076–2081.

    CAS  PubMed  Google Scholar 

  21. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR . Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 2000; 406: 86–90.

    CAS  PubMed  Google Scholar 

  22. Fishman P, Bar-Yehuda S, Ohana G, Barer F, Ochaion A, Erlanger A et al. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 2004; 23: 2465–2471.

    CAS  PubMed  Google Scholar 

  23. Pluquet O, Qu LK, Baltzis D, Koromilas AE . Endoplasmic reticulum stress accelerates p53 degradation by the cooperative actions of Hdm2 and glycogen synthase kinase 3beta. Mol Cell Biol 2005; 25: 9392–9405.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim HM, Kim CS, Lee JH, Jang SJ, Hwang JJ, Ro S et al. CG0009, a novel glycogen synthase kinase 3 inhibitor, induces cell death through cyclin D1 depletion in breast cancer cells. PLoS ONE 2013; 8: e60383.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Karyo R, Eskira Y, Pinhasov A, Belmaker R, Agam G, Eldar-Finkelman H . Identification of eukaryotic elongation factor-2 as a novel cellular target of lithium and glycogen synthase kinase-3. Mol Cell Neurosci 2010; 45: 449–455.

    CAS  PubMed  Google Scholar 

  26. Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H . Inhibition of GSK-3 ameliorates beta-amyloid(A-beta) pathology and restores lysosomal acidification and mTOR activity in the alzheimer's disease mouse model: in vivo and in vitro studies. J Biol Chem 2013; 288: 1295–1306.

    CAS  PubMed  Google Scholar 

  27. Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO . Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA 2011; 108: E1204–E1213.

    PubMed  PubMed Central  Google Scholar 

  28. Shin S, Wolgamott L, Tcherkezian J, Vallabhapurapu S, Yu Y, Roux PP et al. Glycogen synthase kinase-3beta positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene 2013; 33: 1690–1699.

    PubMed  Google Scholar 

  29. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cornu M, Albert V, Hall MN . mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013; 23: 53–62.

    CAS  PubMed  Google Scholar 

  31. Proud CG . mTOR Signalling in Health and Disease. Biochem Soc Trans 2013; 39: 431–436.

    Google Scholar 

  32. Kwiatkowski DJ, Manning BD . Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 2005, 14 Spec No. 2: R251–R258.

    Google Scholar 

  33. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N . mTOR translation initiation and cancer. Oncogene 2006; 25: 6416–6422.

    CAS  PubMed  Google Scholar 

  34. Wander SA, Hennessy BT, Slingerland JM . Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 2011; 121: 1231–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiang GG, Abraham RT . Targeting the mTOR signaling network in cancer. Trends Mol Med 2007; 13: 433–442.

    CAS  PubMed  Google Scholar 

  36. Voss MH, Molina AM, Motzer RJ . mTOR inhibitors in advanced renal cell carcinoma. Hematol Oncol Clin North Am 2011; 25: 835–852.

    PubMed  PubMed Central  Google Scholar 

  37. Choi AM, Ryter SW, Levine B . Autophagy in human health and disease. N. Engl J Med 2013; 368: 1845–1846.

    CAS  PubMed  Google Scholar 

  38. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90: 1383–1435.

    CAS  PubMed  Google Scholar 

  39. Klionsky D . An overview of autophagy: Morphology, mechanism and regulation. Antioxid Redox Signal 2013; 20: 460–473.

    PubMed  Google Scholar 

  40. Schneider JL, Cuervo AM . Autophagy and human disease: emerging themes. Curr Opin Genet Dev 2014; 26C: 16–23.

    Google Scholar 

  41. Kimmelman AC . The dynamic nature of autophagy in cancer. Genes Dev 2011; 25: 1999–2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen N, Karantza V . Autophagy as a therapeutic target in cancer. Cancer Biol Ther 2011; 11: 157–168.

    PubMed  PubMed Central  Google Scholar 

  43. Mathew R, White E . Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 2011; 21: 113–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Eisenberg-Lerner A, Kimchi A . The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis 2009; 14: 376–391.

    PubMed  Google Scholar 

  45. Wu WK, Coffelt SB, Cho CH, Wang XJ, Lee CW, Chan FK et al. The autophagic paradox in cancer therapy. Oncogene 2011; 31: 939–953.

    PubMed  Google Scholar 

  46. Mizushima N, Levine B, Cuervo AM, Klionsky DJ . Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Inoki K, Zhu T, Guan KL . TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.

    CAS  PubMed  Google Scholar 

  48. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM . Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18: 2893–2904.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG . The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 2005; 280: 18717–18727.

    CAS  PubMed  Google Scholar 

  51. Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 2003; 112: 1223–1233.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mizushima N, Yoshimori T . How to interpret LC3 immunoblotting. Autophagy 2007; 3: 542–545.

    CAS  PubMed  Google Scholar 

  53. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720–5728.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005; 171: 603–614.

    PubMed  PubMed Central  Google Scholar 

  55. He C, Levine B . The Beclin 1 interactome. Curr Opin Cell Biol 2012; 22: 140–149.

    Google Scholar 

  56. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 2008; 13: 343–354.

    CAS  PubMed  Google Scholar 

  57. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Saftig P, Klumperman J . Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 2009; 10: 623–635.

    CAS  PubMed  Google Scholar 

  59. Luzio JP, Pryor PR, Bright NA . Lysosomes: fusion and function. Nat Rev Mol Cell Biol 2007; 8: 622–632.

    CAS  PubMed  Google Scholar 

  60. Boya P . Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal 2012; 17: 766–774.

    CAS  PubMed  Google Scholar 

  61. Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S et al. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 2011; 13: 453–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM . mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011; 334: 678–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Haglund K, Dikic I . The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2012; 125: 265–275.

    CAS  PubMed  Google Scholar 

  64. Sorkin A, Goh LK . Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2009; 315: 683–696.

    CAS  PubMed  Google Scholar 

  65. Avraham R, Yarden Y . Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 2011; 12: 104–117.

    CAS  PubMed  Google Scholar 

  66. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2010; 12: 21–35.

    PubMed  PubMed Central  Google Scholar 

  67. Harris TE, Lawrence JC Jr . TOR signaling. Sci STKE 2003; 2003: re15.

    PubMed  Google Scholar 

  68. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    CAS  PubMed  Google Scholar 

  69. Wazir U, Wazir A, Khanzada ZS, Jiang WG, Sharma AK, Mokbel K . Current State of mTOR Targeting in Human Breast Cancer. Cancer Genomics Proteomics 2014; 11: 167–174.

    PubMed  Google Scholar 

  70. Lauring J, Park BH, Wolff AC . The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. J Natl Compr Canc Netw 2013; 11: 670–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955–968.

    CAS  PubMed  Google Scholar 

  72. Gulen MF, Bulek K, Xiao H, Yu M, Gao J, Sun L et al. Inactivation of the enzyme GSK3alpha by the kinase IKKi promotes AKT-mTOR signaling pathway that mediates interleukin-1-induced Th17 cell maintenance. Immunity 2012; 37: 800–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang J, Zhang Y, Bersenev A, O'Brien WT, Tong W, Emerson SG et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 2009; 119: 3519–3529.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Suzuki T, Bridges D, Nakada D, Skiniotis G, Morrison SJ, Lin JD et al. Inhibition of AMPK catabolic action by GSK3. Mol Cell 2013; 50: 407–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 2007; 21: 1367–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.

    CAS  PubMed  Google Scholar 

  77. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25: 795–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22: 124–131.

    CAS  PubMed  Google Scholar 

  79. Zhou J, Freeman TA, Ahmad F, Shang X, Mangano E, Gao E et al. GSK-3alpha is a central regulator of age-related pathologies in mice. J Clin Invest 2013; 123: 1821–1832.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012; 336: 477–481.

    CAS  PubMed  Google Scholar 

  81. Petherick KJ, Williams AC, Lane JD, Ordonez-Moran P, Huelsken J, Collard TJ et al. Autolysosomal beta-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 2013; 32: 1903–1916.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kallunki T, Olsen OD, Jaattela M . Cancer-associated lysosomal changes: friends or foes? Oncogene 2013; 32: 1995–2004.

    CAS  PubMed  Google Scholar 

  83. Altan N, Chen Y, Schindler M, Simon SM . Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med 1998; 187: 1583–1598.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Harris RA, Yang A, Stein RC, Lucy K, Brusten L, Herath A et al. Cluster analysis of an extensive human breast cancer cell line protein expression map database. Proteomics 2002; 2: 212–223.

    CAS  PubMed  Google Scholar 

  85. Bache KG, Slagsvold T, Stenmark H . Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 2004; 23: 2707–2712.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yarden Y . The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37: S3–S8.

    CAS  PubMed  Google Scholar 

  87. Arteaga CL . ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res 2003; 284: 122–130.

    CAS  PubMed  Google Scholar 

  88. Davis NM, Sokolosky M, Stadelman K, Abrams SL, Libra M, Candido S et al. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget 2014; 5: 4603–4650.

    PubMed  PubMed Central  Google Scholar 

  89. Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM . Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003; 200: 290–297.

    CAS  PubMed  Google Scholar 

  90. Doherty L, Gigas DC, Kesari S, Drappatz J, Kim R, Zimmerman J et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 2006; 67: 156–158.

    CAS  PubMed  Google Scholar 

  91. Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM et al. A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 2007; 67: 7960–7965.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Azoulay-Alfaguter I, Yaffe Y, Licht-Murava A, Urbanska M, Jaworski J, Pietrokovski S et al. Distinct molecular regulation of glycogen synthase kinase-3alpha isozyme controlled by its N-terminal region: functional role in calcium/calpain signaling. J Biol Chem 2011; 286: 13470–13480.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation grant No. 341/10 and the Finghort Fund for Cancer Research at Tel Aviv University. We thank Dr Dan Klionsky and Dr Zvulun Elazar for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Eldar-Finkelman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azoulay-Alfaguter, I., Elya, R., Avrahami, L. et al. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene 34, 4613–4623 (2015). https://doi.org/10.1038/onc.2014.390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.390

This article is cited by

Search

Quick links