Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Epigenetic changes in gastroenteropancreatic neuroendocrine tumours

Abstract

An understanding of epigenetic drivers of tumorigenesis has developed rapidly during the last years. The identification of these changes including DNA methylation and histone modifications in gastroenteropancreatic neuroendocrine tumours (GEP-NETs) is a step forward in trying to define underlying biologic processes in this heterogeneous disease. The reversible nature of these changes represents a potential therapeutic target. We present an overview of the current knowledge of epigenetic alterations related to GEP-NETs, focusing on the influence and impact these changes have on pathogenesis and prognosis. The potential role of demethylating agents in the management of this patient population is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Oberg K, Knigge U, Kwekkeboom D, Perren A,, Group EGW.Neuroendocrine gastro-entero-pancreatic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23: vii124–vii130.

    Google Scholar 

  2. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008; 9: 61–72.

    CAS  Google Scholar 

  3. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE et al. One hundred years after "carcinoid": epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063–3072.

    Google Scholar 

  4. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 2012; 36: 173–184.

    Google Scholar 

  5. Graham JS, Kaye SB, Brown R . The promises and pitfalls of epigenetic therapies in solid tumours. Eur J Cancer 2009; 45: 1129–1136.

    CAS  Google Scholar 

  6. Meeker A, Heaphy C . Gastroenteropancreatic endocrine tumors. Mol Cell Endocrinol 2014; 386: 101–120.

    CAS  Google Scholar 

  7. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP . CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999; 96: 8681–8686.

    CAS  Google Scholar 

  8. Bestor TH . Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 1992; 11: 2611–2617.

    CAS  Google Scholar 

  9. Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247–257.

    CAS  Google Scholar 

  10. Gordon M, El-Kalla M, Baksh S . RASSF1 Polymorphisms in Cancer. Mol Biol Int 2012; 2012: 365213.

    Google Scholar 

  11. Malpeli G, Amato E, Dandrea M, Fumagalli C, Debattisti V, Boninsegna L et al. Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer 2011; 11: 351.

    CAS  Google Scholar 

  12. Estrabaud E, Lassot I, Blot G, Le Rouzic E, Tanchou V, Quemeneur E et al. RASSF1C, an isoform of the tumor suppressor RASSF1A, promotes the accumulation of beta-catenin by interacting with betaTrCP. Cancer Res 2007; 67: 1054–1061.

    CAS  Google Scholar 

  13. House MG, Herman JG, Guo MZ, Hooker CM, Schulick RD, Lillemoe KD et al. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg 2003; 238: 423–431.

    Google Scholar 

  14. Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT . Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 2000; 85: 4146–4156.

    CAS  Google Scholar 

  15. Di Fiore R, D'Anneo A, Tesoriere G, Vento R . RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 2013; 228: 1676–1687.

    CAS  Google Scholar 

  16. Lubomierski N, Kersting M, Bert T, Muench K, Wulbrand U, Schuermann M et al. Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors. Cancer Res 2001; 61: 5905–5910.

    CAS  Google Scholar 

  17. Muscarella P, Melvin WS, Fisher WE, Foor J, Ellison EC, Herman JG et al. Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. Cancer Res 1998; 58: 237–240.

    CAS  Google Scholar 

  18. Wild A, Ramaswamy A, Langer P, Celik I, Fendrich V, Chaloupka B et al. Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors. J Clin Endocrinol Metab 2003; 88: 1367–1373.

    CAS  Google Scholar 

  19. Liu L, Gerson SL . Targeted modulation of MGMT: clinical implications. Clin Cancer Res 2006; 12: 328–331.

    CAS  Google Scholar 

  20. Gerson SL . Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 2002; 20: 2388–2399.

    CAS  Google Scholar 

  21. Kulke MH, Hornick JL, Frauenhoffer C, Hooshmand S, Ryan DP, Enzinger PC et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res 2009; 15: 338–345.

    CAS  Google Scholar 

  22. Arnold CN, Sosnowski A, Schmitt-Graff A, Arnold R, Blum HE . Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int J Cancer 2007; 120: 2157–2164.

    CAS  Google Scholar 

  23. Larsson C . Epigenetic aspects on therapy development for gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology 2013; 97: 19–25.

    CAS  Google Scholar 

  24. Dejeux E, Olaso R, Dousset B, Audebourg A, Gut IG, Terris B et al. Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocr Relat Cancer 2009; 16: 939–952.

    CAS  Google Scholar 

  25. Fontaniere S, Tost J, Wierinckx A, Lachuer J, Lu J, Hussein N et al. Gene expression profiling in insulinomas of Men1 beta-cell mutant mice reveals early genetic and epigenetic events involved in pancreatic beta-cell tumorigenesis. Endocr Relat Cancer 2006; 13: 1223–1236.

    CAS  Google Scholar 

  26. Mei M, Deng D, Liu TH, Sang XT, Lu X, Xiang HD et al. Clinical implications of microsatellite instability and MLH1 gene inactivation in sporadic insulinomas. J Clin Endocrinol Metab 2009; 94: 3448–3457.

    CAS  Google Scholar 

  27. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331: 1199–1203.

    CAS  Google Scholar 

  28. Chen SF, Kasajima A, Yazdani S, Chan MS, Wang L, He YY et al. Clinicopathologic significance of immunostaining of alpha-thalassemia/mental retardation syndrome X-linked protein and death domain-associated protein in neuroendocrine tumors. Hum Pathol 2013; 44: 2199–2203.

    CAS  Google Scholar 

  29. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011; 333: 425.

    CAS  Google Scholar 

  30. de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol 2012; 25: 1033–1039.

    CAS  Google Scholar 

  31. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006; 24: 4677–4684.

    CAS  Google Scholar 

  32. Modlin IM, Pavel M, Kidd M, Gustafsson BI . Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther 2010; 31: 169–188.

    CAS  Google Scholar 

  33. Oberg K, Kvols L, Caplin M, Delle Fave G, de Herder W, Rindi G et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol 2004; 15: 966–973.

    CAS  Google Scholar 

  34. Zhang HY, Rumilla KM, Jin L, Nakamura N, Stilling GA, Ruebel KH et al. Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine 2006; 30: 299–306.

    CAS  Google Scholar 

  35. Pizzi S, Azzoni C, Bottarelli L, Campanini N, D'Adda T, Pasquali C et al. RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol 2005; 206: 409–416.

    CAS  Google Scholar 

  36. Fotouhi O, Fahmideh MA, Kjellman M, Sulaiman L, Hoog A, Zedenius J et al. Global hypomethylation and promoter methylation in small intestinal neuroendocrine tumors: An in vivo and in vitro study. Epigenetics 2014; 9: 7.

    Google Scholar 

  37. Choi IS, Estecio MR, Nagano Y, Kim do H, White JA, Yao JC et al. Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol 2007; 20: 802–810.

    CAS  Google Scholar 

  38. Stricker I, Tzivras D, Nambiar S, Wulf J, Liffers ST, Vogt M et al. Site- and grade-specific diversity of LINE1 methylation pattern in gastroenteropancreatic neuroendocrine tumours. Anticancer Res 2012; 32: 3699–3706.

    Google Scholar 

  39. Ostertag EM, Kazazian HH Jr . Biology of mammalian L1 retrotransposons. Annu Rev Genet 2001; 35: 501–538.

    CAS  Google Scholar 

  40. Kazazian HH Jr., Goodier JL . LINE drive. retrotransposition and genome instability. Cell 2002; 110: 277–280.

    CAS  Google Scholar 

  41. Pavlicek A, Jabbari K, Paces J, Paces V, Hejnar JV, Bernardi G . Similar integration but different stability of Alus and LINEs in the human genome. Gene 2001; 276: 39–45.

    CAS  Google Scholar 

  42. Arnold CN, Nagasaka T, Goel A, Scharf I, Grabowski P, Sosnowski A et al. Molecular characteristics and predictors of survival in patients with malignant neuroendocrine tumors. Int J Cancer 2008; 123: 1556–1564.

    CAS  Google Scholar 

  43. Rahman MM, Qian ZR, Wang EL, Yoshimoto K, Nakasono M, Sultana R et al. DNA methyltransferases 1, 3a, and 3b overexpression and clinical significance in gastroenteropancreatic neuroendocrine tumors. Hum Pathol 2010; 41: 1069–1078.

    CAS  Google Scholar 

  44. La Rosa S, Marando A, Furlan D, Sahnane N, Capella C . Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol 2012; 36: 601–611.

    Google Scholar 

  45. Furlan D, Sahnane N, Mazzoni M, Pastorino R, Carnevali I, Stefanoli M et al. Diagnostic utility of MS-MLPA in DNA methylation profiling of adenocarcinomas and neuroendocrine carcinomas of the colon-rectum. Virchows Archiv 2013; 462: 47–56.

    CAS  Google Scholar 

  46. Kim JT, Li J, Jang ER, Gulhati P, Rychahou PG, Napier DL et al. Deregulation of Wnt/beta-catenin signaling through genetic or epigenetic alterations in human neuroendocrine tumors. Carcinogenesis 2013; 34: 953–961.

    CAS  Google Scholar 

  47. Verdugo AD, Crona J, Starker LF, Stalberg P, Akerström G, Westin G et al. Global DNA methylation patterns in small intestinal neuroendocrine tumors. Endocr Relat Cancer 2014; 21: L5–7.

    CAS  Google Scholar 

  48. Geli J, Kiss N, Karimi M, Lee JJ, Backdahl M, Ekstrom TJ et al. Global and regional CpG methylation in pheochromocytomas and abdominal paragangliomas: association to malignant behavior. Clin Cancer Res 2008; 14: 2551–2559.

    CAS  Google Scholar 

  49. Masramon L, Vendrell E, Tarafa G, Capella G, Miro R, Ribas M et al. Genetic instability and divergence of clonal populations in colon cancer cells in vitro. J Cell Sci 2006; 119: 1477–1482.

    CAS  Google Scholar 

  50. Warneboldt J, Haller F, Horstmann O, Danner BC, Fuzesi L, Doenecke D et al. Histone H1x is highly expressed in human neuroendocrine cells and tumours. BMC Cancer 2008; 8: 388.

    Google Scholar 

  51. Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Holler T et al. H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol 2010; 41: 181–189.

    CAS  Google Scholar 

  52. Trang P, Weidhaas JB, Slack FJ . MicroRNAs as potential cancer therapeutics. Oncogene 2008; 27: S52–S57.

    CAS  Google Scholar 

  53. Li SC, Essaghir A, Martijn C, Lloyd RV, Demoulin JB, Oberg K et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol 2013; 26: 685–696.

    CAS  Google Scholar 

  54. Ruebel K, Leontovich AA, Stilling GA, Zhang S, Righi A, Jin L et al. MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression. Mod Pathol 2010; 23: 367–375.

    CAS  Google Scholar 

  55. Rius M, Lyko F . Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 2012; 31: 4257–4265.

    CAS  Google Scholar 

  56. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006; 106: 1794–1803.

    CAS  Google Scholar 

  57. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20: 2429–2440.

    CAS  Google Scholar 

  58. Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi SH et al. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 2009; 114: 2764–2773.

    CAS  Google Scholar 

  59. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007; 25: 3109–3115.

    CAS  Google Scholar 

  60. Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 2009; 27: 5410–5417.

    CAS  Google Scholar 

  61. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    CAS  Google Scholar 

  62. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 103–107.

    CAS  Google Scholar 

  63. Habbe N, Bert T, Simon B . Identification of methylation-associated gene expression in neuroendocrine pancreatic tumor cells. Pancreatology 2007; 7: 352–359.

    CAS  Google Scholar 

  64. Alexander VM, Roy M, Steffens KA, Kunnimalaiyaan M, Chen H . Azacytidine induces cell cycle arrest and suppression of neuroendocrine markers in carcinoids. Int J Clin Exp Med 2010; 3: 95–102.

    CAS  Google Scholar 

  65. Vijayaraghavalu S, Labhasetwar V . Efficacy of decitabine-loaded nanogels in overcoming cancer drug resistance is mediated via sustained DNA methyltransferase 1 (DNMT1) depletion. Cancer Lett 2013; 331: 122–129.

    CAS  Google Scholar 

  66. Mossman D, Kim KT, Scott RJ . Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC Cancer 2010; 10: 366.

    CAS  Google Scholar 

  67. Chu SH, Ma YB, Feng DF, Zhang H, Qiu JH, Zhu ZA . Effect of 5-Aza-2'-deoxycytidine on SLC22A18 in glioma U251 cells. Mol Med Rep 2012; 5: 138–141.

    CAS  Google Scholar 

  68. Hagelgans A, Menschikowski M, Fuessel S, Nacke B, Arneth BM, Wirth MP et al. Deregulated expression of urokinase and its inhibitor type 1 in prostate cancer cells: role of epigenetic mechanisms. Exp Mol Pathol 2013; 94: 458–465.

    CAS  Google Scholar 

  69. Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L et al. Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2'-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 2012; 287: 39954–39966.

    CAS  Google Scholar 

  70. Fialova B, Smesny Trtkova K, Paskova L, Langova K, Kolar Z . Effect of histone deacetylase and DNA methyltransferase inhibitors on the expression of the androgen receptor gene in androgen-independent prostate cancer cell lines. Oncol Rep 2013; 29: 2039–2045.

    CAS  Google Scholar 

  71. Naldi I, Taranta M, Gherardini L, Pelosi G, Viglione F, Grimaldi S et al. Novel epigenetic target therapy for prostate cancer: a preclinical study. PLoS ONE 2014; 9: e98101.

    Google Scholar 

  72. Thibault A, Figg WD, Bergan RC, Lush RM, Myers CE, Tompkins A et al. A phase II study of 5-aza-2'deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 1998; 84: 87–89.

    CAS  Google Scholar 

  73. Samlowski WE, Leachman SA, Wade M, Cassidy P, Porter-Gill P, Busby L et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 2005; 23: 3897–3905.

    CAS  Google Scholar 

  74. Momparler RL, Bouffard DY, Momparler LF, Dionne J, Belanger K, Ayoub J . Pilot phase I-II study on 5-aza-2'-deoxycytidine (Decitabine) in patients with metastatic lung cancer. Anti-cancer Drugs 1997; 8: 358–368.

    CAS  Google Scholar 

  75. Karahoca M, Momparler RL . Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenet 2013; 5: 3.

    CAS  Google Scholar 

  76. Wagner JM, Hackanson B, Lubbert M, Jung M . Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenet 2010; 1: 117–136.

    CAS  Google Scholar 

  77. Baradari V, Huether A, Hopfner M, Schuppan D, Scherubl H . Antiproliferative and proapoptotic effects of histone deacetylase inhibitors on gastrointestinal neuroendocrine tumor cells. Endocr Relat Cancer 2006; 13: 1237–1250.

    CAS  Google Scholar 

  78. Greenblatt DY, Vaccaro AM, Jaskula-Sztul R, Ning L, Haymart M, Kunnimalaiyaan M et al. Valproic acid activates notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist 2007; 12: 942–951.

    CAS  Google Scholar 

  79. Radtke F, Raj K . The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003; 3: 756–767.

    CAS  Google Scholar 

  80. Adler JT, Hottinger DG, Kunnimalaiyaan M, Chen H . Combination therapy with histone deacetylase inhibitors and lithium chloride: a novel treatment for carcinoid tumors. Ann Surg Oncol 2009; 16: 481–486.

    Google Scholar 

  81. Mohammed TA, Holen KD, Jaskula-Sztul R, Mulkerin D, Lubner SJ, Schelman WR et al. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist 2011; 16: 835–843.

    CAS  Google Scholar 

  82. Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res 2006; 12: 3997–4003.

    CAS  Google Scholar 

  83. Strosberg JR, Fine RL, Choi J, Nasir A, Coppola D, Chen DT et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 2011; 117: 268–275.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Mapelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mapelli, P., Aboagye, E., Stebbing, J. et al. Epigenetic changes in gastroenteropancreatic neuroendocrine tumours. Oncogene 34, 4439–4447 (2015). https://doi.org/10.1038/onc.2014.379

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.379

This article is cited by

Search

Quick links