Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cks1 is a critical regulator of hematopoietic stem cell quiescence and cycling, operating upstream of Cdk inhibitors

Abstract

Cyclin-dependent kinase subunit 1 (Cks1) is a critical rate-limiting component of the Skp1-Cullin1-Skp2 (SCFSkp2) ubiquitin ligase that controls cell cycle inhibitor abundance. Cyclin-dependent kinase (Cdk) inhibitors (CKIs) regulate hematopoietic stem cell (HSC) self-renewal, regeneration after cytotoxic stress and tumor cell proliferation. We thus studied the role of Cks1 in HSC and in a prototypic stem cell disorder, chronic myeloid leukemia (CML). Cks1 transcript was highly expressed in Lin−Sca-1+Kit+ (LSK) HSC, and the loss resulted in accumulation of the SCFSkp2/Cks1 substrates p21, p27, p57 and p130 particularly in CD150+ LSK cells. This accumulation correlated with decreased proliferation and accumulation of Cks1−/− HSC, slower regeneration after stress and prolonged HSC quiescence. At the hematopoietic progenitor (HPC) level, loss of Cks1 sensitized towards apoptosis. In CML, Cks1 expression was increased, and treatment with the Abl kinase inhibitor, imatinib, reduced Cks1 expression. Also, we found that Cks1 is critical for Bcr–Abl-induced cytokine-independent clonogenic activity. In conclusion, our study presents a novel function of Cks1 in maintaining HSC/HPC homeostasis and shows that Cks1 is a possible target in therapies aimed at the SCFSkp2/Cks1 complex that controls CKI abundance and cancer cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pietras EM, Warr MR, Passegue E . Cell cycle regulation in hematopoietic stem cells. J Cell Biol 2011; 195: 709–720.

    Article  CAS  Google Scholar 

  2. Tesio M, Trumpp A . Breaking the cell cycle of HSCs by p57 and friends. Cell Stem Cell 2011; 9: 187–192.

    Article  CAS  Google Scholar 

  3. Cheng T . Cell cycle inhibitors in normal and tumor stem cells. Oncogene 2004; 23: 7256–7266.

    Article  CAS  Google Scholar 

  4. Satyanarayana A, Kaldis P . Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009; 28: 2925–2939.

    Article  CAS  Google Scholar 

  5. Matsumoto A, Nakayama KI . Role of key regulators of the cell cycle in maintenance of hematopoietic stem cells. Biochim Biophys Acta 2013; 1830: 2335–2344.

    Article  CAS  Google Scholar 

  6. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT . Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 2000; 6: 1235–1240.

    Article  CAS  Google Scholar 

  7. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y et al. p57 Is Required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 2011; 9: 262–271.

    Article  CAS  Google Scholar 

  8. Zou P, Yoshihara H, Hosokawa K, Tai I, Shinmyozu K, Tsukahara F et al. p57(KiP2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell 2011; 9: 247–261.

    Article  CAS  Google Scholar 

  9. Slingerland J, Pagano M . Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000; 183: 10–17.

    Article  CAS  Google Scholar 

  10. Le Toriellec E, Despouy G, Pierron G, Gaye N, Joiner M, Bellanger D et al. Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia. Blood 2008; 111: 2321–2328.

    Article  CAS  Google Scholar 

  11. Krek W . Proteolysis and the G1-S transition: the SCF connection. Curr Opin Genet Dev 1998; 8: 36–42.

    Article  CAS  Google Scholar 

  12. Spruck C, Strohmaier H, Watson M, Smith APL, Ryan A, Krek W et al. A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27(Kip1). Mol Cell 2001; 7: 639–650.

    Article  CAS  Google Scholar 

  13. Yu ZK, Gervais JLM, Zhang H . Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 1998; 95: 11324–11329.

    Article  CAS  Google Scholar 

  14. Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H et al. Degradation of p57(Kip2) mediated by SCFSkp2 - dependent ubiquitylation. Proc Natl Acad Sci USA 2003; 100: 10231–10236.

    Article  CAS  Google Scholar 

  15. Tedesco D, Lukas J, Reed SI . The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Genes Dev 2002; 16: 2946–2957.

    Article  CAS  Google Scholar 

  16. Rodriguez S, Wang L, Mumaw C, Srour EF, Lo Celso C, Nakayama K et al. The SKP2 E3 ligase regulates basal homeostasis and stress-induced regeneration of HSCs. Blood 2011; 117: 6509–6519.

    Article  CAS  Google Scholar 

  17. Wang J, Han F, Wu J, Lee SW, Chan CH, Wu CY et al. The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood 2011; 118: 5429–5438.

    Article  Google Scholar 

  18. Westbrook L, Manuvakhova M, Kern FG, Estes NR, Ramanathan HN, Thottassery JV . Cks1 regulates cdk1 expression: a novel role during mitotic entry in breast cancer cells. Cancer Res 2007; 67: 11393–11401.

    Article  CAS  Google Scholar 

  19. Hoellein A, Graf S, Bassermann F, Schoeffmann S, Platz U, Holzlwimmer G et al. Cks1 promotion of S phase entry and proliferation is independent of p27Kip1 suppression. Mol Cell Biol 2012; 32: 2416–2427.

    Article  CAS  Google Scholar 

  20. Frescas D, Pagano M . Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008; 8: 438–449.

    Article  CAS  Google Scholar 

  21. Morita Y, Ema H, Nakauchi H . Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 2010; 207: 1173–1182.

    Article  CAS  Google Scholar 

  22. Cheng T, Rodrigues N, Shen HM, Yang YG, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21(cip1/waf1). Science 2000; 287: 1804–1808.

    Article  CAS  Google Scholar 

  23. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    Article  CAS  Google Scholar 

  24. Lerner C, Harrison DE . 5-fluorouracil spares hematopoietic stem-cells responsible for long-term repopulation. Exp Hematol 1990; 18: 114–118.

    CAS  PubMed  Google Scholar 

  25. Perrotti D, Jamieson C, Goldman J, Skorski T . Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010; 120: 2254–2264.

    Article  CAS  Google Scholar 

  26. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    Article  CAS  Google Scholar 

  27. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway. Oncogene 1996; 12: 839–846.

    CAS  Google Scholar 

  28. Affer M, Dao S, Liu C, Olshen AB, Mo Q, Viale A et al. Gene expression differences between enriched normal and chronic myelogenous leukemia quiescent stem/progenitor cells and correlations with biological abnormalities. J Oncol 2011; 2011: 798592.

    Article  CAS  Google Scholar 

  29. Bruennert D, Czibere A, Bruns I, Kronenwett R, Gattermann N, Haas R et al. Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34+ cells from patients with chronic myelogenous leukaemia following imatinib therapy. Leukemia 2009; 23: 983–985.

    Article  CAS  Google Scholar 

  30. Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, Weissman IL et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 2008; 3: 416–428.

    Article  CAS  Google Scholar 

  31. Rossi L, Lin KK, Boles NC, Yang L, King KY, Jeong M et al. Less is more: unveiling the functional core of hematopoietic stem cells through knockout mice. Cell Stem Cell 2012; 11: 302–317.

    Article  CAS  Google Scholar 

  32. Skaar JR, Pagan JK, Pagano M . Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 2013; 14: 369–381.

    Article  CAS  Google Scholar 

  33. Zhan F, Colla S, Wu X, Chen B, Stewart JP, Kuehl WM et al. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms. Blood 2007; 109: 4995–5001.

    Article  CAS  Google Scholar 

  34. Nagler RM, Ben-Izhak O, Ostrovsky D, Golz A, Hershko DD . The expression and prognostic significance of Cks1 in salivary cancer. Cancer Invest 2009; 27: 512–520.

    Article  CAS  Google Scholar 

  35. Keller UB, Old JB, Dorsey FC, Nilsson JA, Nilsson L, MacLean KH et al. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. EMBO J 2007; 26: 2562–2574.

    Article  CAS  Google Scholar 

  36. Gomez-Casares MT, Garcia-Alegria E, Lopez-Jorge CE, Ferrandiz N, Blanco R, Alvarez S et al. MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27(KIP1.). Oncogene 2013; 32: 2239–2246.

    Article  CAS  Google Scholar 

  37. Zhang HJ, Peng C, Hu YG, Li HW, Sheng Z, Chen YY et al. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet 2012; 44: 861–871.

    Article  CAS  Google Scholar 

  38. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 2013; 154: 556–568.

    Article  CAS  Google Scholar 

  39. Old JB, Kratzat S, Hoellein A, Graf S, Nilsson JA, Nilsson L et al. Skp2 directs Myc-mediated suppression of p27Kip1 yet has modest effects on Myc-driven lymphomagenesis. Mol Cancer Res 2010; 8: 353–362.

    Article  CAS  Google Scholar 

  40. Wang X, Gorospe M, Huang Y, Holbrook NJ . p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 1997; 15: 2991–2997.

    Article  CAS  Google Scholar 

  41. Zhao HL, Bauzon F, Fu H, Lu ZL, Cui JH, Nakayama K et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 2013; 24: 645–659.

    Article  CAS  Google Scholar 

  42. Lu Z, Bauzon F, Fu H, Cui J, Zhao H, Nakayama K et al. Skp2 suppresses apoptosis in Rb1-deficient tumours by limiting E2F1 activity. Nat Commun 2014; 5: 3463.

    Article  Google Scholar 

  43. Istvanffy R, Kroger M, Eckl C, Gitzelmann S, Vilne B, Bock F et al. Stromal pleiotrophin regulates repopulation behavior of hematopoietic stem cells. Blood 2011; 118: 2712–2722.

    Article  CAS  Google Scholar 

  44. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  Google Scholar 

  45. Miething C, Feihl S, Mugler C, Grundler R, von Bubnoff N, Lordick F et al. The Bcr-Abl mutations T315I and Y253H do not confer a growth advantage in the absence of imatinib. Leukemia 2006; 20: 650–657.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephanie Schöffmann and Kerstin Behnke for excellent technical support, and the Flow Cytometry Core Facility and the Zentrum Präklinische Forschung (TU München) for expert assistance. This work was supported by the Deutsche Forschungsgemeinschaft (KE 222/7-1, OO 8/2-3, OO 8/5-1 and FOR 2033/1), the Deutsche Jose Carreras Leukämie Stiftung (R11/12 and R11/18) and the German Cancer Consortium (DKTK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R A J Oostendorp or U Keller.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiatti, V., Istvánffy, R., Pietschmann, E. et al. Cks1 is a critical regulator of hematopoietic stem cell quiescence and cycling, operating upstream of Cdk inhibitors. Oncogene 34, 4347–4357 (2015). https://doi.org/10.1038/onc.2014.364

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.364

This article is cited by

Search

Quick links