Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear accumulation of annexin A2 contributes to chromosomal instability by coilin-mediated centromere damage

Abstract

Most human cancers show chromosomal instability (CIN), but the precise mechanisms remain uncertain. Annexin A2 is frequently overexpressed in human cancers, and its relationship to tumorigenesis is poorly understood. We found that annexin A2 is overexpressed in the nuclei of CIN cells compared with cells with microsatellite instability (MIN). Ectopic annexin A2 expression in MIN cells results in a high level of aneuploidy and induces lagging chromosomes; suppression of annexin A2 in CIN cells reduces such CIN signatures with apoptosis of highly aneuploid cells. Ectopic expression of annexin A2 in MIN cells reduces the expression of centromere proteins. Conversely, annexin A2-knockdown in CIN cells increases the expression of centromere proteins. Moreover, the endogenous expression levels of centromere proteins in CIN cells were greatly reduced compared with MIN cell lines. The reduced expression of centromere proteins likely occurred due to aberrant centromere localization of coilin, a major component of the Cajal bodies. These results suggest that nuclear accumulation of annexin A2 has a crucial role in CIN by disrupting centromere function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lengauer C, Kinzler KW, Vogelstein B . Genetic instability in colorectal cancers. Nature 1997; 386: 623–627.

    Article  CAS  PubMed  Google Scholar 

  2. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  3. Jallepalli PV, Waizenegger IC, Bunz F, Langer S, Speicher MR, Peters JM et al. Securin is required for chromosomal stability in human cells. Cell 2001; 105: 445–457.

    Article  CAS  PubMed  Google Scholar 

  4. Barber TD, McManus K, Yuen KW, Reis M, Parmigiani G, Shen D et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA 2008; 105: 3443–3448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang N, Ge G, Meyer R, Sethi S, Basu D, Pradhan S et al. Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci USA 2008; 105: 13033–13038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011; 333: 1039–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–303.

    Article  CAS  PubMed  Google Scholar 

  8. Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 2004; 36: 1159–1161.

    Article  CAS  PubMed  Google Scholar 

  9. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998; 17: 3052–3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998; 20: 189–193.

    Article  CAS  PubMed  Google Scholar 

  11. Ganem NJ, Godinho SA, Pellman D . A mechanism linking extra centrosomes to chromosomal instability. Nature 2009; 460: 278–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Silkworth WT, Nardi IK, Scholl LM, Cimini D . Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 2009; 4: e6564.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 2001; 3: 433–438.

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS . A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol 2001; 3: 429–432.

    Article  CAS  PubMed  Google Scholar 

  15. Green RA, Kaplan KB . Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol 2003; 163: 949–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kops GJ, Foltz DR, Cleveland DW . Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA 2004; 101: 8699–8704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakhoum SF, Thompson SL, Manning AL, Compton DA . Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 2009; 11: 27–35.

    Article  CAS  PubMed  Google Scholar 

  18. Bakhoum SF, Genovese G, Compton DA . Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 2009; 19: 1937–1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 2003; 63: 3511–3516.

    CAS  PubMed  Google Scholar 

  20. Tomonaga T, Matsushita K, Ishibashi M, Nezu M, Shimada H, Ochiai T et al. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res 2005; 65: 4683–4689.

    Article  CAS  PubMed  Google Scholar 

  21. Kuga T, Nie H, Kazami T, Satoh M, Matsushita K, Nomura F et al. Lamin B2 prevents chromosome instability by ensuring proper mitotic chromosome segregation. Oncogenesis 2014; 3: e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang JL, Gray RM, Haudek KC, Patterson RJ . Nucleocytoplasmic lectins. Biochim Biophys Acta 2004; 1673: 75–93.

    Article  CAS  PubMed  Google Scholar 

  23. Kumble KD, Iversen PL, Vishwanatha JK . The role of primer recognition proteins in DNA replication: inhibition of cellular proliferation by antisense oligodeoxyribonucleotides. J Cell Sci 1992; 101 (Pt 1): 35–41.

    CAS  PubMed  Google Scholar 

  24. Vishwanatha JK, Kumble S . Involvement of annexin II in DNA replication: evidence from cell-free extracts of Xenopus eggs. J Cell Sci 1993; 105 (Pt 2): 533–540.

    CAS  PubMed  Google Scholar 

  25. Esposito I, Penzel R, Chaib-Harrireche M, Barcena U, Bergmann F, Riedl S et al. Tenascin C and annexin II expression in the process of pancreatic carcinogenesis. J Pathol 2006; 208: 673–685.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma MR, Koltowski L, Ownbey RT, Tuszynski GP, Sharma MC . Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 2006; 81: 146–156.

    Article  CAS  PubMed  Google Scholar 

  27. Duncan R, Carpenter B, Main LC, Telfer C, Murray GI . Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer 2008; 98: 426–433.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson SL, Compton DA . Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 2008; 180: 665–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eberhard DA, Karns LR, VandenBerg SR, Creutz CE . Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 2001; 114: 3155–3166.

    CAS  PubMed  Google Scholar 

  30. Bayani J, Selvarajah S, Maire G, Vukovic B, Al-Romaih K, Zielenska M et al. Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol 2007; 17: 5–18.

    Article  CAS  PubMed  Google Scholar 

  31. Morency E, Sabra M, Catez F, Texier P, Lomonte P . A novel cell response triggered by interphase centromere structural instability. J Cell Biol 2007; 177: 757–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raska I, Andrade LE, Ochs RL, Chan EK, Chang CM, Roos G et al. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res 1991; 195: 27–37.

    Article  CAS  PubMed  Google Scholar 

  33. Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M . A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 1995; 9: 573–586.

    Article  CAS  PubMed  Google Scholar 

  34. Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA 2000; 97: 1148–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalitsis P, Fowler KJ, Earle E, Hill J, Choo KH . Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc Natl Acad Sci USA 1998; 95: 1136–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson SL, Bakhoum SF, Compton DA . Mechanisms of chromosomal instability. Curr Biol 2010; 20: R285–R295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomonaga T, Nomura F . Chromosome instability and kinetochore dysfunction. Histol Histopathol 2007; 22: 191–197.

    CAS  PubMed  Google Scholar 

  38. Liu J, Rothermund CA, Ayala-Sanmartin J, Vishwanatha JK . Nuclear annexin II negatively regulates growth of LNCaP cells and substitution of ser 11 and 25 to glu prevents nucleo-cytoplasmic shuttling of annexin II. BMC Biochem 2003; 4: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tomas A, Futter C, Moss SE . Annexin 11 is required for midbody formation and completion of the terminal phase of cytokinesis. J Cell Biol 2004; 165: 813–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Everett RD, Earnshaw WC, Findlay J, Lomonte P . Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J 1999; 18: 1526–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lomonte P, Everett RD . Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. J Virol 1999; 73: 9456–9467.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sawyers CL . Research on resistance to cancer drug Gleevec. Science 2001; 294: 1834.

    Article  CAS  PubMed  Google Scholar 

  43. Wang TL, Diaz LA Jr, Romans K, Bardelli A, Saha S, Galizia G et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci USA 2004; 101: 3089–3094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chuthapisith S, Layfield R, Kerr ID, Hughes C, Eremin O . Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs. Int J Oncol 2007; 30: 1545–1551.

    CAS  PubMed  Google Scholar 

  45. Takano S, Togawa A, Yoshitomi H, Shida T, Kimura F, Shimizu H et al. Annexin II overexpression predicts rapid recurrence after surgery in pancreatic cancer patients undergoing gemcitabine-adjuvant chemotherapy. Ann Surg Oncol 2008; 15: 3157–3168.

    Article  PubMed  Google Scholar 

  46. Nishimori T, Tomonaga T, Matsushita K, Oh-Ishi M, Kodera Y, Maeda T et al. Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics 2006; 6: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  47. Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T et al. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res 2004; 10: 2007–2014.

    Article  CAS  PubMed  Google Scholar 

  48. Seimiya M, Tomonaga T, Matsushita K, Sunaga M, Oh-Ishi M, Kodera Y et al. Identification of novel immunohistochemical tumor markers for primary hepatocellular carcinoma; clathrin heavy chain and formiminotransferase cyclodeaminase. Hepatology 2008; 48: 519–530.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Masumi Ishibashi and Nobuko Tanaka for technical assistance. This work was supported by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Tomonaga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazami, T., Nie, H., Satoh, M. et al. Nuclear accumulation of annexin A2 contributes to chromosomal instability by coilin-mediated centromere damage. Oncogene 34, 4177–4189 (2015). https://doi.org/10.1038/onc.2014.345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.345

This article is cited by

Search

Quick links