Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

LNK (SH2B3): paradoxical effects in ovarian cancer

Abstract

LNK (SH2B3) is an adaptor protein studied extensively in normal and malignant hematopoietic cells. In these cells, it downregulates activated tyrosine kinases at the cell surface resulting in an antiproliferative effect. To date, no studies have examined activities of LNK in solid tumors. In this study, we found by in silico analysis and staining tissue arrays that the levels of LNK expression were elevated in high-grade ovarian cancer. To test the functional importance of this observation, LNK was either overexpressed or silenced in several ovarian cancer cell lines. Remarkably, overexpression of LNK rendered the cells resistant to death induced by either serum starvation or nutrient deprivation, and generated larger tumors using a murine xenograft model. In contrast, silencing of LNK decreased ovarian cancer cell growth in vitro and in vivo. Western blot studies indicated that overexpression of LNK upregulated and extended the transduction of the mitogenic signal, whereas silencing of LNK produced the opposite effects. Furthermore, forced expression of LNK reduced cell size, inhibited cell migration and markedly enhanced cell adhesion. Liquid chromatography–mass spectroscopy identified 14-3-3 as one of the LNK-binding partners. Our results suggest that in contrast to the findings in hematologic malignancies, the adaptor protein LNK acts as a positive signal transduction modulator in ovarian cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Devalliere J, Charreau B . The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol 2011; 82: 1391–1402.

    Article  CAS  Google Scholar 

  2. Li Y, He X, Schembri-King J, Jakes S, Hayashi J . Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J Immunol 2000; 164: 5199–5206.

    Article  CAS  Google Scholar 

  3. Rudd CE . Lnk adaptor: novel negative regulator of B cell lymphopoiesis. Sci STKE 2001; 2001: pe1.

    CAS  PubMed  Google Scholar 

  4. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 2002; 195: 1599–1611.

    Article  CAS  Google Scholar 

  5. Takaki S, Morita H, Tezuka Y, Takatsu K . Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J Exp Med 2002; 195: 151–160.

    Article  CAS  Google Scholar 

  6. Tong W, Lodish HF . Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 2004; 200: 569–580.

    Article  Google Scholar 

  7. Buza-Vidas N, Antonchuk J, Qian H, Mansson R, Luc S, Zandi S et al. Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK. Genes Dev 2006; 20: 2018–2023.

    Article  CAS  Google Scholar 

  8. Seita J, Ema H, Ooehara J, Yamazaki S, Tadokoro Y, Yamasaki A et al. Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc Natl Acad Sci USA 2007; 104: 2349–2354.

    Article  CAS  Google Scholar 

  9. Tong W, Zhang J, Lodish HF . Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 2005; 105: 4604–4612.

    Article  CAS  Google Scholar 

  10. Baran-Marszak F, Magdoud H, Desterke C, Alvarado A, Roger C, Harel S et al. Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms. Blood 2010; 116: 5961–5971.

    Article  Google Scholar 

  11. Gery S, Cao Q, Gueller S, Xing H, Tefferi A, Koeffler HP . Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leukoc Biol 2009; 85: 957–965.

    Article  CAS  Google Scholar 

  12. Gery S, Gueller S, Chumakova K, Kawamata N, Liu L, Koeffler HP . Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood 2007; 110: 3360–3364.

    Article  CAS  Google Scholar 

  13. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood 2008; 112: 4039–4047.

    Article  CAS  Google Scholar 

  14. Gueller S, Gery S, Nowak V, Liu L, Serve H, Koeffler HP . Adaptor protein Lnk associates with Tyr(568) in c-Kit. Biochem J 2008; 415: 241–245.

    Article  CAS  Google Scholar 

  15. Gueller S, Goodridge HS, Niebuhr B, Xing H, Koren-Michowitz M, Serve H et al. Adaptor protein Lnk inhibits c-Fms-mediated macrophage function. J Leukoc Biol 2010; 88: 699–706.

    Article  CAS  Google Scholar 

  16. Gueller S, Hehn S, Nowak V, Gery S, Serve H, Brandts CH et al. Adaptor protein Lnk binds to PDGF receptor and inhibits PDGF-dependent signaling. Exp Hematol 2011; 39: 591–600.

    Article  CAS  Google Scholar 

  17. Lin DC, Yin T, Koren-Michowitz M, Ding LW, Gueller S, Gery S et al. Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3. Blood 2012; 120: 3310–3317.

    Article  CAS  Google Scholar 

  18. Hurtado C, Erquiaga I, Aranaz P, Migueliz I, Garcia-Delgado M, Novo FJ et al. LNK can also be mutated outside PH and SH2 domains in myeloproliferative neoplasms with and without V617FJAK2 mutation. Leuk Res 2011; 35: 1537–1539.

    Article  CAS  Google Scholar 

  19. Ha JS, Jeon DS . Possible new LNK mutations in myeloproliferative neoplasms. Am J Hematol 2011; 86: 866–868.

    Article  CAS  Google Scholar 

  20. Lasho TL, Pardanani A, Tefferi A . LNK mutations in JAK2 mutation-negative erythrocytosis. New Engl J Med 2010; 363: 1189–1190.

    Article  CAS  Google Scholar 

  21. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD Jr. et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010; 116: 988–992.

    Article  CAS  Google Scholar 

  22. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  Google Scholar 

  23. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    Article  CAS  Google Scholar 

  24. Perez-Garcia A, Ambesi-Impiombato A, Hadler M, Rigo I, Leduc CA, Kelly K et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 2013; 122: 2425–2432.

    Article  CAS  Google Scholar 

  25. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 2013; 45: 1293–1299.

    Article  CAS  Google Scholar 

  26. Bersenev A, Wu C, Balcerek J, Jing J, Kundu M, Blobel GA et al. Lnk constrains myeloproliferative diseases in mice. J Clin Invest 2010; 120: 2058–2069.

    Article  CAS  Google Scholar 

  27. Devalliere J, Chatelais M, Fitau J, Gerard N, Hulin P, Velazquez L et al. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets alpha-parvin to control cell adhesion and migration. FASEB J 2012; 26: 2592–2606.

    Article  CAS  Google Scholar 

  28. Fitau J, Boulday G, Coulon F, Quillard T, Charreau B . The adaptor molecule Lnk negatively regulates tumor necrosis factor-alpha-dependent VCAM-1 expression in endothelial cells through inhibition of the ERK1 and -2 pathways. J Biol Chem 2006; 281: 20148–20159.

    Article  CAS  Google Scholar 

  29. Chatelais M, Devalliere J, Galli C, Charreau B . Gene transfer of the adaptor Lnk (SH2B3) prevents porcine endothelial cell activation and apoptosis: implication for xenograft's cytoprotection. Xenotransplantation 2011; 18: 108–120.

    Article  Google Scholar 

  30. Gery S, Gueller S, Nowak V, Sohn J, Hofmann WK, Koeffler HP . Expression of the adaptor protein Lnk in leukemia cells. Exp Hematol 2009; 37: 585–592 e582.

    Article  CAS  Google Scholar 

  31. Tan TZ, Miow QH, Huang RY, Wong MK, Ye J, Lau JA et al. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer. EMBO Mol Med 2013; 5: 983–998.

    Article  CAS  Google Scholar 

  32. Jiang J, Balcerek J, Rozenova K, Cheng Y, Bersenev A, Wu C et al. 14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells. J Clin Invest 2012; 122: 2079–2091.

    Article  CAS  Google Scholar 

  33. Maures TJ, Chen L, Carter-Su C . Nucleocytoplasmic shuttling of the adapter protein SH2B1β (SH2-Bβ) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of ngf-responsive genes. Mol Endocrinol 2009; 23: 1077–1091.

    Article  CAS  Google Scholar 

  34. Gery S, Koeffler HP . Role of the adaptor protein LNK in normal and malignant hematopoiesis. Oncogene 2012; 32: 3111–3118.

    Article  Google Scholar 

  35. Oh ST . When the brakes are lost: LNK dysfunction in mice, men, and myeloproliferative neoplasms. Ther Adv Hematol 2011; 2: 11–19.

    Article  CAS  Google Scholar 

  36. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741–752.

    Article  CAS  Google Scholar 

  37. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    Article  CAS  Google Scholar 

  38. Ahmed Z, Pillay TS . Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signalling. Biochem J 2003; 371: 405–412.

    Article  CAS  Google Scholar 

  39. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L et al. Kinase activation through dimerization by human SH2-B. Mol Cell Biol 2005; 25: 2607–2621.

    Article  CAS  Google Scholar 

  40. Qian X, Ginty DD . SH2-B and APS are multimeric adapters that augment TrkA signaling. Mol Cell Biol 2001; 21: 1613–1620.

    Article  CAS  Google Scholar 

  41. The-Cancer-Genome-Altas-Research-Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  42. Werz C, Kohler K, Hafen E, Stocker H . The Drosophila SH2B family adaptor Lnk acts in parallel to chico in the insulin signaling pathway. PLoS Genet 2009; 5: e1000596.

    Article  Google Scholar 

  43. Almudi I, Poernbacher I, Hafen E, Stocker H . The Lnk/SH2B adaptor provides a fail-safe mechanism to establish the Insulin receptor-Chico interaction. Cell Commun Signal 2013; 11: 26.

    Article  CAS  Google Scholar 

  44. Lanning NJ, Su HW, Argetsinger LS, Carter-Su C . Identification of SH2B1beta as a focal adhesion protein that regulates focal adhesion size and number. J Cell Sci 2011; 124: 3095–3105.

    Article  CAS  Google Scholar 

  45. Pellinen T, Tuomi S, Arjonen A, Wolf M, Edgren H, Meyer H et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev Cell 2008; 15: 371–385.

    Article  CAS  Google Scholar 

  46. Lee JI, Dominy JE Jr., Sikalidis AK, Hirschberger LL, Wang W, Stipanuk MH . HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway. Physiol Genomics 2008; 33: 218–229.

    Article  CAS  Google Scholar 

  47. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 2009; 461: 819–822.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative, and by the National Institutes of Health of the USA (R01CA026038-33) and the Singapore Ministry of Health’s National Medical Research Council under its Singapore Translational Research Investigator Award to HPK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-W Ding.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, LW., Sun, QY., Lin, DC. et al. LNK (SH2B3): paradoxical effects in ovarian cancer. Oncogene 34, 1463–1474 (2015). https://doi.org/10.1038/onc.2014.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.34

This article is cited by

Search

Quick links