Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression

Abstract

Lung cancer is the leading cause of cancer death worldwide, with metastasis underlying majority of related deaths. Angiomotin (AMOT), a scaffold protein, has been shown to interact with oncogenic Yes-associated protein/transcriptional co-activator with a PDZ-binding motif (YAP/TAZ) proteins, suggesting a potential role in tumor progression. However, the functional role of AMOT in lung cancer remains unknown. This study aimed to identify the patho-physiological characteristics of AMOT in lung cancer progression. Results revealed that AMOT expression was significantly decreased in clinical lung cancer specimens. Knockdown of AMOT in a low metastatic CL1-0 lung cancer cell line initiated cancer proliferation, migration, invasion and epithelial–mesenchymal transition. The trigger of cancer progression caused by AMOT loss was transduced by decreased cytoplasmic sequestration and increased nuclear translocation of oncogenic co-activators YAP/TAZ, leading to increased expression of the growth factor, Cyr61. Tumor promotion by AMOT knockdown was reversed when YAP/TAZ or Cyr61 was absent. Further, AMOT knockdown increased the growth and spread of Lewis lung carcinoma in vivo. These findings suggest that AMOT is a crucial suppressor of lung cancer metastasis and highlight its critical role as a tumor suppressor and its potential as a prognostic biomarker and therapeutic target for lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci USA 2011; 108: 7160–7165.

    Article  CAS  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  Google Scholar 

  3. Kozu Y, Maniwa T, Takahashi S, Isaka M, Ohde Y, Nakajima T . Risk factors for both recurrence and survival in patients with pathological stage I non-small-cell lung cancer. Eur J Cardiothorac Surg 2013; 44: e53–e58.

    Article  Google Scholar 

  4. Hung JJ, Jeng WJ, Chou TY, Hsu WH, Wu KJ, Huang BS et al. Prognostic value of the new international association for the study of lung cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification on death and recurrence in completely resected stage I lung adenocarcinoma. Ann Surg 2013; 258: 1079–1086.

    Article  Google Scholar 

  5. Reck M, Heigener DF, Mok T, Soria JC, Rabe KF . Management of non-small-cell lung cancer: recent developments. Lancet 2013; 382: 709–719.

    Article  CAS  Google Scholar 

  6. Troyanovsky B, Levchenko T, Månsson G, Matvijenko O, Holmgren L . Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 2001; 152: 1247–1254.

    Article  CAS  Google Scholar 

  7. Bratt A, Birot O, Sinha I, Veitonmäki N, Aase K, Ernkvist M et al. Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem 2005; 280: 34859–34869.

    Article  CAS  Google Scholar 

  8. Dai X, She P, Chi F, Feng Y, Liu H, Jin D et al. Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration and angiogenesis. J Biol Chem 2013; 288: 34041–34051.

    Article  CAS  Google Scholar 

  9. Moleirinho S, Guerrant W, Kissil JL . The Angiomotins - from discovery to function. FEBS Lett 2014; 588: 2693–2703.

    Article  CAS  Google Scholar 

  10. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 2006; 125: 535–548.

    Article  CAS  Google Scholar 

  11. Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, Christian N et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin's regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 2011; 19: 527–540.

    Article  CAS  Google Scholar 

  12. Ranahan WP, Han Z, Smith-Kinnaman W, Nabinger SC, Heller B, Herbert BS et al. The adaptor protein AMOT promotes the proliferation of mammary epithelial cells via the prolonged activation of the extracellular signal-regulated kinases. Cancer Res 2011; 71: 2203–2211.

    Article  CAS  Google Scholar 

  13. Adler JJ, Johnson DE, Heller BL, Bringman LR, Ranahan WP, Conwell MD et al. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc Natl Acad Sci USA 2013; 110: 17368–17373.

    Article  CAS  Google Scholar 

  14. Park HW, Guan KL . Regulation of the Hippo pathway and implications for anti-cancer drug development. Trends Pharmacol Sci 2013; 34: 581–589.

    Article  CAS  Google Scholar 

  15. Zhou Z, Hao Y, Liu N, Raptis L, Tsao MS, Yang X . TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 2011; 30: 2181–2186.

    Article  CAS  Google Scholar 

  16. Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 2000; 19: 6778–6791.

    Article  CAS  Google Scholar 

  17. Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M et al. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem 1995; 270: 14733–14741.

    Article  CAS  Google Scholar 

  18. Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X . Over-expression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 2010; 101: 1279–1278.

    Article  CAS  Google Scholar 

  19. Zhi X, Zhao D, Zhou Z, Liu R, Chen C . YAP promotes breast cell proliferation and survival partially through stabilizing the KLF5 transcription factor. Am J Pathol 2012; 180: 2452–2461.

    Article  CAS  Google Scholar 

  20. Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, Showe LC et al. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal 2013; 6: ra77.

    Article  Google Scholar 

  21. Oka T, Schmitt AP, Sudol M . Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 2012; 31: 128–134.

    Article  CAS  Google Scholar 

  22. Paramasivam M, Sarkeshik A, Yates JR 3rd, Fernandes MJ, McCollum D . Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell 2011; 22: 3725–3733.

    Article  CAS  Google Scholar 

  23. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W . Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 2011; 286: 7018–7026.

    Article  CAS  Google Scholar 

  24. Hsu YL, Wu CY, Hung JY, Lin YS, Huang MS, Kuo PL . Galectin-1 promotes lung cancer tumor metastasis by potentiating integrin α6β4 and Notch1/Jagged2 signaling pathway. Carcinogenesis 2013; 34: 1370–1381.

    Article  CAS  Google Scholar 

  25. Kao YR, Shih JY, Wen WC, Ko YP, Chen BM, Chan YL et al. Tumor-associated antigen L6 and the invasion of human lung cancer cells. Clin Cancer Res 2003; 9: 2807–2816.

    CAS  PubMed  Google Scholar 

  26. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997; 17: 353–360.

    Article  CAS  Google Scholar 

  27. Shih JY, Yang PC . The EMT regulator slug and lung carcinogenesis. Carcinogenesis 2011; 32: 1299–1304.

    Article  CAS  Google Scholar 

  28. Moreno-Bueno G, Portillo F, Cano A . Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008; 27: 6958–6969.

    Article  CAS  Google Scholar 

  29. Zhang H, Pasolli HA, Fuchs E . Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci USA 2011; 108: 2270–2275.

    Article  CAS  Google Scholar 

  30. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012; 150: 780–791.

    Article  CAS  Google Scholar 

  31. Holmgren L, Ambrosino E, Birot O, Tullus C, Veitonmäki N, Levchenko T et al. DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth. Proc Natl Acad Sci USA 2006; 103: 9208–9213.

    Article  CAS  Google Scholar 

  32. Arigoni M, Barutello G, Lanzardo S, Longo D, Aime S, Curcio C et al. A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors. Angiogenesis 2012; 15: 305–316.

    Article  CAS  Google Scholar 

  33. Ernkvist M, Birot O, Sinha I, Veitonmaki N, Nyström S, Aase K et al. Differential roles of p80- and p130-angiomotin in the switch between migration and stabilization of endothelial cells. Biochim Biophys Acta 2008; 1783: 429–437.

    Article  CAS  Google Scholar 

  34. Fanning AS, Van Itallie CM, Anderson JM . Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 2012; 23: 577–590.

    Article  CAS  Google Scholar 

  35. Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y et al. YAP induces malignant mesothelioma cell proliferation by up-regulating transcription of cell cycle-promoting genes. Oncogene 2012; 31: 5117–5122.

    Article  CAS  Google Scholar 

  36. Muramatsu T, Imoto I, Matsui T, Kozaki K, Haruki S, Sudol M et al. YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis 2011; 32: 389–398.

    Article  CAS  Google Scholar 

  37. Wang L, Shi S, Guo Z, Zhang X, Han S, Yang A et al. Over-expression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS ONE 2013; 8: e65539.

    Article  CAS  Google Scholar 

  38. Su LL, Ma WX, Yuan JF, Shao Y, Xiao W, Jiang SJ . Expression of Yes-associated protein in non-small cell lung cancer and its relationship with clinical pathological factors. Chin Med J (Engl) 2012; 125: 4003–4008.

    CAS  Google Scholar 

  39. Zhao B, Tumaneng K, Guan KL . The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011; 13: 877–883.

    Article  CAS  Google Scholar 

  40. Avruch J, Zhou D, Bardeesy N . YAP oncogene over-expression supercharges colon cancer proliferation. Cell Cycle 2012; 11: 1090–1096.

    Article  CAS  Google Scholar 

  41. Cai H, Xu Y . The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal 2013; 11: 31.

    Article  CAS  Google Scholar 

  42. Xu CM, Liu WW, Liu CJ, Wen C, Lu HF, Wan FS . Mst1 over-expression inhibited the growth of human non-small cell lung cancer in vitro and in vivo. Cancer Gene Ther 2013; 20: 453–460.

    Article  CAS  Google Scholar 

  43. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 2011; 25: 51–63.

    Article  Google Scholar 

  44. Pobbati AV, Hong W . Emerging roles of TEAD transcription factors and its co-activators in cancers. Cancer Biol Ther 2013; 14: 390–398.

    Article  CAS  Google Scholar 

  45. Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY et al. Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS ONE 2007; 2: e534.

    Article  Google Scholar 

  46. Harris LG, Pannell LK, Singh S, Samant RS, Shevde LA . Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated up-regulation of Cyr61. Oncogene 2012; 31: 3370–3380.

    Article  CAS  Google Scholar 

  47. Lin J, Huo R, Wang L, Zhou Z, Sun Y, Shen B. et al. A novel anti-Cyr61 antibody inhibits breast cancer growth and metastasis in vivo. Cancer Immunol Immunother 2012; 61: 677–687.

    Article  CAS  Google Scholar 

  48. Schütte U, Bisht S, Heukamp LC, Kebschull M, Florin A, Haarmann J et al. Hippo signaling mediates proliferation, invasiveness, and metastatic potential of clear cell renal cell carcinoma. Transl Oncol 2014; 7: 309–321.

    Article  Google Scholar 

  49. Jandova J, Beyer TE, Meuillet EJ, Watts GS . The matrix protein CCN1/CYR61 is required for α(V)β5-mediated cancer cell migration. Cell Biochem Funct 2012; 30: 687–695.

    Article  CAS  Google Scholar 

  50. Wu DD, Zhang F, Hao F, Chun J, Xu X, Cui MZ . Matricellular protein Cyr61bridges lysophosphatidic acid and integrin pathways leading to cell migration. J Biol Chem 2014; 289: 5774–5783.

    Article  CAS  Google Scholar 

  51. Sun X, Fa P, Cui Z, Xia Y, Sun L, Li Z et al. The EDA-containing cellular fibronectin induces epithelial-mesenchymal transition in lung cancer cells through integrin α9β1-mediated activation of PI3-K/AKT and Erk1/2. Carcinogenesis 2014; 35: 184–191.

    Article  CAS  Google Scholar 

  52. Jones AC, Trujillo KA, Phillips GK, Fleet TM, Murton JK, Severns V et al. Early growth response 1 and fatty acid synthase expression is altered in tumor adjacent prostate tissue and indicates field cancerization. Prostate 2012; 72: 1159–1170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Science Council of Taiwan (NSC 101-2628-B-037-001-MY3; NSC 101-2320-B-037-043-MY3), the Ministry of Science and Technology (MOST 103-2320-B-037-006-MY3; MOST 103-2314-B-037-052), the Kaohsiung Medical University “Aim for the top 500 universities grant, Grant No. KMU-DT103008”, the Research Center for Environmental Medicine, Kaohsiung Medical University (KMU-TP103A19; KMU-TP103A20) and the Kaohsiung Medical University Hospital Research Foundation (KMUH102-2T06). We also thank the Center for Resources, Research, and Development of Kaohsiung Medical University for their support with the instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P-L Kuo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, YL., Hung, JY., Chou, SH. et al. Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression. Oncogene 34, 4056–4068 (2015). https://doi.org/10.1038/onc.2014.333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.333

This article is cited by

Search

Quick links