Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic Ras inhibits IRF1 to promote viral oncolysis

Subjects

Abstract

Oncolytic viruses exploit common molecular changes in cancer cells, which are not present in normal cells, to target and kill cancer cells. Ras transformation and defects in type I interferon (IFN)-mediated antiviral responses are known to be the major mechanisms underlying viral oncolysis. Previously, we demonstrated that oncogenic RAS/Mitogen-activated protein kinase kinase (Ras/MEK) activation suppresses the transcription of many IFN-inducible genes in human cancer cells, suggesting that Ras transformation underlies type I IFN defects in cancer cells. Here, we investigated how Ras/MEK downregulates IFN-induced transcription. By conducting promoter deletion analysis of IFN-inducible genes, namely guanylate-binding protein 2 and IFN gamma inducible protein 47 (Ifi47), we identified the IFN regulatory factor 1 (IRF1) binding site as the promoter region responsible for the regulation of transcription by MEK. MEK inhibition promoted transcription of the IFN-inducible genes in wild type mouse embryonic fibroblasts (MEFs), but not in IRF1−/− MEFs, showing that IRF1 is involved in MEK-mediated downregulation of IFN-inducible genes. Furthermore, IRF1 protein expression was lower in RasV12 cells compared with vector control NIH3T3 cells, but was restored to equivalent levels by inhibition of MEK. Similarly, the restoration of IRF1 expression by MEK inhibition was observed in human cancer cells. IRF1 re-expression in human cancer cells caused cells to become resistant to infection by the oncolytic vesicular stomatitis virus strain. Together, this work demonstrates that Ras/MEK activation in cancer cells downregulates transcription of IFN-inducible genes by targeting IRF1 expression, resulting in increased susceptibility to viral oncolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bell J . Oncolytic viruses: an approved product on the horizon? Mol Ther 2010; 18: 233–234.

    Article  CAS  Google Scholar 

  2. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  Google Scholar 

  3. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW . The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998; 17: 3351–3362.

    Article  CAS  Google Scholar 

  4. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  Google Scholar 

  5. Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003; 4: 263–275.

    Article  CAS  Google Scholar 

  6. Norman KL, Lee PW . Not all viruses are bad guys: the case for reovirus in cancer therapy. Drug Discov Today 2005; 10: 847–855.

    Article  CAS  Google Scholar 

  7. Farassati F, Yang AD, Lee PW . Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 2001; 3: 745–750.

    Article  CAS  Google Scholar 

  8. Balachandran S, Porosnicu M, Barber GN . Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis. J Virol 2001; 75: 3474–3479.

    Article  CAS  Google Scholar 

  9. Bergmann M, Romirer I, Sachet M, Fleischhacker R, Garcia-Sastre A, Palese P et al. A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res 2001; 61: 8188–8193.

    CAS  PubMed  Google Scholar 

  10. Cascallo M, Capella G, Mazo A, Alemany R . Ras-dependent oncolysis with an adenovirus VAI mutant. Cancer Res 2003; 63: 5544–5550.

    CAS  PubMed  Google Scholar 

  11. Goetz C, Everson RG, Zhang LC, Gromeier M . MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Mol Ther 2010; 18: 1937–1946.

    Article  CAS  Google Scholar 

  12. Puhlmann J, Puehler F, Mumberg D, Boukamp P, Beier R . Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus. Oncogene 2010; 29: 2205–2216.

    Article  CAS  Google Scholar 

  13. Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PW . Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther 2007; 15: 1522–1530.

    Article  CAS  Google Scholar 

  14. Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PW . Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther 2007; 15: 1522–1530.

    Article  CAS  Google Scholar 

  15. Battcock SM, Collier TW, Zu D, Hirasawa K . Negative regulation of the alpha interferon-induced antiviral response by the Ras/Raf/MEK pathway. J Virol 2006; 80: 4422–4430.

    Article  CAS  Google Scholar 

  16. Christian SL, Collier TW, Zu D, Licursi M, Hough CM, Hirasawa K . Activated Ras/MEK inhibits the antiviral response of alpha interferon by reducing STAT2 levels. J Virol 2009; 83: 6717–6726.

    Article  CAS  Google Scholar 

  17. Noser JA, Mael AA, Sakuma R, Ohmine S, Marcato P, Lee PW et al. The RAS/Raf1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol Ther 2007; 15: 1531–1536.

    Article  CAS  Google Scholar 

  18. Christian SL, Zu D, Licursi M, Komatsu Y, Pongnopparat T, Codner DA et al. Suppression of IFN-induced transcription underlies IFN defects generated by activated Ras/MEK in human cancer cells. PLoS One 2012; 7: e44267.

    Article  CAS  Google Scholar 

  19. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N . IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19: 623–655.

    Article  CAS  Google Scholar 

  20. Kimura T, Nakayama K, Penninger J, Kitagawa M, Harada H, Matsuyama T et al. Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science 1994; 264: 1921–1924.

    Article  CAS  Google Scholar 

  21. Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements. Cell 1988; 54: 903–913.

    Article  CAS  Google Scholar 

  22. Pine R . Constitutive expression of an ISGF2/IRF1 transgene leads to interferon-independent activation of interferon-inducible genes and resistance to virus infection. J Virol 1992; 66: 4470–4478.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanazawa N, Kurosaki M, Sakamoto N, Enomoto N, Itsui Y, Yamashiro T et al. Regulation of hepatitis C virus replication by interferon regulatory factor 1. J Virol 2004; 78: 9713–9720.

    Article  CAS  Google Scholar 

  24. Brien JD, Daffis S, Lazear HM, Cho H, Suthar MS, Gale M Jr et al. Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8(+) T cell immune responses against West Nile virus infection. PLoS Pathog 2011; 7: e1002230.

    Article  CAS  Google Scholar 

  25. Tamura T, Ishihara M, Lamphier MS, Tanaka N, Oishi I, Aizawa S et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 1995; 376: 596–599.

    Article  CAS  Google Scholar 

  26. Willman CL, Sever CE, Pallavicini MG, Harada H, Tanaka N, Slovak ML et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 1993; 259: 968–971.

    Article  CAS  Google Scholar 

  27. Moriyama Y, Nishiguchi S, Tamori A, Koh N, Yano Y, Kubo S et al. Tumor-suppressor effect of interferon regulatory factor-1 in human hepatocellular carcinoma. Clin Cancer Res 2001; 7: 1293–1298.

    CAS  PubMed  Google Scholar 

  28. Doherty GM, Boucher L, Sorenson K, Lowney J . Interferon regulatory factor expression in human breast cancer. Ann Surg 2001; 233: 623–629.

    Article  CAS  Google Scholar 

  29. Adjei AA . Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001; 93: 1062–1074.

    Article  CAS  Google Scholar 

  30. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11–22.

    CAS  Google Scholar 

  31. Iankov I, Kurokawa C, Middha S, Aderca I, Allen C, Keeney G et al. Gene expression profile of innate immune anti-viral factors in ovarian cancer patients treated with oncolytic measles virus. Mol Ther 2014; 22: S12.

    Google Scholar 

  32. Kurokawa C, Iankov I, Aderca I, Petell C, Middha S, Giannini C et al. Pre-existing antiviral state can impact oncolytic infection in glioblastoma patients treated with oncolytic measles virus. Mol Ther 2014; 22 (Suppl 1): S248.

    Google Scholar 

  33. Reis LF, Harada H, Wolchok JD, Taniguchi T, Vilcek J . Critical role of a common transcription factor, IRF-1, in the regulation of IFN-beta and IFN-inducible genes. EMBO J 1992; 11: 185–193.

    Article  CAS  Google Scholar 

  34. Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351–379.

    Article  CAS  Google Scholar 

  35. Vasudevan S, Tong Y, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318: 1931–1934.

    Article  CAS  Google Scholar 

  36. Liu X, Ru J, Zhang J, Zhu LH, Liu M, Li X et al. miR-23a targets interferon regulatory factor 1 and modulates cellular proliferation and paclitaxel-induced apoptosis in gastric adenocarcinoma cells. PLoS One 2013; 8: e64707.

    Article  CAS  Google Scholar 

  37. Lian J, Tian H, Liu L, Zhang XS, Li WQ, Deng YM et al. Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1. Cell Death Dis 2010; 1: e94.

    Article  CAS  Google Scholar 

  38. Fukunaga R, Hunter T . MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 1997; 16: 1921–1933.

    Article  CAS  Google Scholar 

  39. Scheper GC, van Kollenburg B, Hu J, Luo Y, Goss DJ, Proud CG . Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J Biol Chem 2002; 277: 3303–3309.

    Article  CAS  Google Scholar 

  40. Minich WB, Balasta ML, Goss DJ, Rhoads RE . Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc Natl Acad Sci USA 1994; 91: 7668–7672.

    Article  CAS  Google Scholar 

  41. Topisirovic I, Ruiz-Gutierrez M, Borden KL . Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 2004; 64: 8639–8642.

    Article  CAS  Google Scholar 

  42. Phillips A, Blaydes JP . MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene 2008; 27: 1645–1649.

    Article  CAS  Google Scholar 

  43. Sun WH, Pabon C, Alsayed Y, Huang PP, Jandeska S, Uddin S et al. Interferon-alpha resistance in a cutaneous T-cell lymphoma cell line is associated with lack of STAT1 expression. Blood 1998; 91: 570–576.

    CAS  PubMed  Google Scholar 

  44. Nguyen TL, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci USA 2008; 105: 14981–14986.

    Article  CAS  Google Scholar 

  45. Goldstein D, Laszlo J . Interferon therapy in cancer: from imaginon to interferon. Cancer Res 1986; 46: 4315–4329.

    CAS  PubMed  Google Scholar 

  46. Landolfo S, Guarini A, Riera L, Gariglio M, Gribaudo G, Cignetti A et al. Chronic myeloid leukemia cells resistant to interferon-alpha lack STAT1 expression. Hematol J 2000; 1: 7–14.

    Article  CAS  Google Scholar 

  47. Sakai I, Takeuchi K, Yamauchi H, Narumi H, Fujita S . Constitutive expression of SOCS3 confers resistance to IFN-alpha in chronic myelogenous leukemia cells. Blood 2002; 100: 2926–2931.

    Article  CAS  Google Scholar 

  48. Shang D, Liu Y, Ito N, Kamoto T, Ogawa O . Defective Jak-Stat activation in renal cell carcinoma is associated with interferon-alpha resistance. Cancer Sci 2007; 98: 1259–1264.

    Article  CAS  Google Scholar 

  49. Tanaka N, Ishihara M, Kitagawa M, Harada H, Kimura T, Matsuyama T et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 1994; 77: 829–839.

    Article  CAS  Google Scholar 

  50. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 2013; 41: D991–D995.

    Article  CAS  Google Scholar 

  51. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 2010 38: D105–D110.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (to KH) from the Canadian Institutes for Health Research (CIHR), the Regional Development Corporation of Newfoundland and Labrador (RDC) and Canadian Breast Cancer Foundation (CBCF). SLC was supported by a post-doctoral award from CIHR and RDC and a separate trainee award from the Beatrice Hunter Cancer Research Institute with funds provided by the Cancer Research Training Program as part of The Terry Fox Foundation Strategic Health Research Training Program in Cancer Research at CIHR. Special thanks to Dr John Bell (Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada) for VSV and VSVM51R, and Nebiur E A for graphic design. We thank Susan Wakeham and Rahul-dev Kalsi for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Hirasawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, Y., Christian, S., Ho, N. et al. Oncogenic Ras inhibits IRF1 to promote viral oncolysis. Oncogene 34, 3985–3993 (2015). https://doi.org/10.1038/onc.2014.331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.331

This article is cited by

Search

Quick links