Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Genetic alterations of protein tyrosine phosphatases in human cancers

Subjects

Abstract

Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, PTP receptor T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11, which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Brognard J, Hunter T . Protein kinase signaling networks in cancer. Curr Opin Genet Dev 2011; 21: 4–11.

    CAS  PubMed  Google Scholar 

  2. Julien SG, Dubé N, Hardy S, Tremblay ML . Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 2011; 11: 35–49.

    CAS  PubMed  Google Scholar 

  3. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 2004; 304: 1164–1166.

    CAS  PubMed  Google Scholar 

  4. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A et al. Protein tyrosine phosphatases in the human genome. Cell 2004; 117: 699–711.

    CAS  PubMed  Google Scholar 

  5. Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 2009; 136: 352–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tonks NK . Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 2006; 7: 833–846.

    CAS  PubMed  Google Scholar 

  7. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  8. Lui VW, Peyser ND, Ng PK, Hritz J, Zeng Y, Lu Y et al. Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc Natl Acad Sci USA 2014; 111: 1114–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garraway LA, Lander ES . Lessons from the cancer genome. Cell 2013; 153: 17–37.

    CAS  PubMed  Google Scholar 

  11. Zhao Y, Zhang X, Guda K, Lawrence E, Sun Q, Watanabe T et al. Identification and functional characterization of paxillin as a target of protein tyrosine phosphatase receptor T. Proc Natl Acad Sci USA 2010; 107: 2592–2597.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Laczmanska I, Karpinski P, Bebenek M, Sedziak T, Ramsey D, Szmida E et al. Protein tyrosine phosphatase receptor-like genes are frequently hypermethylated in sporadic colorectal cancer. J Hum Genet 2013; 58: 11–15.

    CAS  PubMed  Google Scholar 

  13. Liu Z, Zhang J, Gao Y, Pei L, Zhou J, Gu L et al. Large-scale characterization of DNA methylation changes in human gastric carcinomas with and without metastasis. Clin Cancer Res 2014; 20: 4598–4612.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Becka S, Zhang P, Craig SE, Lodowski DT, Wang Z, Brady-Kalnay SM . Characterization of the adhesive properties of the type IIb subfamily receptor protein tyrosine phosphatases. Cell Commun Adhes 2010; 17: 34–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Besco JA, Hooft van Huijsduijnen R, Frostholm A, Rotter A . Intracellular substrates of brain-enriched receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT). Brain Res 2006; 1116: 50–57.

    CAS  PubMed  Google Scholar 

  16. Yu J, Becka S, Zhang P, Zhang X, Brady-Kalnay SM, Wang Z . Tumor-derived extracellular mutations of PTPRT/PTP{rho} are defective in cell adhesion. Mol Cancer Res 2008; 6: 1106–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang P, Becka S, Craig SE, Lodowski DT, Brady-Kalnay SM, Wang Z . Cancer-derived mutations in the fibronectin III repeats of PTPRT/PTPrho inhibit cell-cell aggregation. Cell Commun Adhes 2009; 16: 146–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Guo A, Yu J, Possemato A, Chen Y, Zheng W et al. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. PNAS 2007; 104: 4060–4064.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Darnell JE . Validating Stat3 in cancer therapy. Nat Med 2005; 11: 595–596.

    CAS  PubMed  Google Scholar 

  20. Zhang P, Zhao Y, Zhu X, Sedwick D, Zhang X, Wang Z . Cross-talk between phospho-STAT3 and PLC{gamma}1 plays a critical role in colorectal tumorigenesis. Mol Cancer Res 2011; 9: 1418–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng X, Scott A, Wang Y, Wang L, Zhao Y, Doerner S et al. PTPRT regulates high-fat diet-induced obesity and insulin resistance. PLoS ONE 2014; 9: e100783.

    PubMed  PubMed Central  Google Scholar 

  22. Park AR, Oh D, Lim SH, Choi J, Moon J, Yu DY et al. Regulation of dendritic arborization by BCR Rac1 GTPase-activating protein, a substrate of PTPRT. J Cell Sci 2012; 125: 4518–4531.

    CAS  PubMed  Google Scholar 

  23. Lim SH, Moon J, Lee M, Lee JR . PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue. Biochem Biophys Res Commun 2013; 439: 40–46.

    CAS  PubMed  Google Scholar 

  24. Cox C, Bignell G, Greenman C, Stabenau A, Warren W, Stephens P et al. A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci USA 2005; 102: 4542–4547.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Purdie KJ, Lambert SR, Teh MT, Chaplin T, Molloy G, Raghavan M et al. Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes Chromosomes Cancer 2007; 46: 661–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohno T, Otsuka A, Girard L, Sato M, Iwakawa R, Ogiwara H et al. A catalog of genes homozygously deleted in human lung cancer and the candidacy of PTPRD as a tumor suppressor gene. Genes Chromosomes Cancer 2010; 49: 342–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Giefing M, Zemke N, Brauze D, Kostrzewska-Poczekaj M, Luczak M, Szaumkessel M et al. High resolution ArrayCGH and expression profiling identifies PTPRD and PCDH17/PCH68 as tumor suppressor gene candidates in laryngeal squamous cell carcinoma. Genes Chromosomes Cancer 2011; 50: 154–166.

    CAS  PubMed  Google Scholar 

  28. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    Article  PubMed  Google Scholar 

  29. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007; 450: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Solomon DA, Kim J-S, Cronin JC, Sibenaller Z, Ryken T, Rosenberg SA et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res 2008; 68: 10300–10306.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci USA 2009; 106: 9435–9440.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ortiz B, Fabius AW, Wu WH, Pedraza A, Brennan CW, Schultz N et al. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc Natl Acad Sci USA 2014; 111: 8149–8154.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang Y, Janku F, Subbiah V, Angelo LS, Naing A, Anderson PM et al. Germline PTPRD mutations in Ewing sarcoma: biologic and clinical implications. Oncotarget 2013; 4: 884–889.

    PubMed  PubMed Central  Google Scholar 

  34. Funato K, Yamazumi Y, Oda T, Akiyama T . Tyrosine phosphatase PTPRD suppresses colon cancer cell migration in coordination with CD44. Exp Ther Med 2011; 2: 457–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Woodings JA, Sharp SJ, Machesky LM . MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta. Biochem J 2003; 371: 463–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Meehan M, Parthasarathi L, Moran N, Jefferies CA, Foley N, Lazzari E et al. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase A oncogene. Mol Cancer 2012; 11: 6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sap J, Jiang YP, Friedlander D, Grumet M, Schlessinger J . Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding. Mol Cell Biol 1994; 14: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB et al. Recurrent R-spondin fusions in colon cancer. Nature 2012; 488: 660–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakamura M, Kishi M, Sakaki T, Hashimoto H, Nakase H, Shimada K et al. Novel tumor suppressor loci on 6q22-23 in primary central nervous system lymphomas. Cancer Res 2003; 63: 737–741.

    CAS  PubMed  Google Scholar 

  40. Agarwal S, Al-Keilani MS, Alqudah MA, Sibenaller ZA, Ryken TC, Assem M . Tumor derived mutations of protein tyrosine phosphatase receptor type k affect its function and alter sensitivity to chemotherapeutics in glioma. PLoS ONE 2013; 8: e62852.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu Y, Tan LJ, Grachtchouk V, Voorhees JJ, Fisher GJ . Receptor-type protein-tyrosine phosphatase-kappa regulates epidermal growth factor receptor function. J Biol Chem 2005; 280: 42694–42700.

    CAS  PubMed  Google Scholar 

  42. Lucci MA, Orlandi R, Triulzi T, Tagliabue E, Balsari A, Villa-Moruzzi E . Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cell Oncol 2010; 32: 361–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Novellino L, De Filippo A, Deho P, Perrone F, Pilotti S, Parmiani G et al. PTPRK negatively regulates transcriptional activity of wild type and mutated oncogenic beta-catenin and affects membrane distribution of beta-catenin/E-cadherin complexes in cancer cells. Cell Signal 2008; 20: 872–883.

    CAS  PubMed  Google Scholar 

  44. Wang SE, Wu FY, Shin I, Qu S, Arteaga CL . Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function. Mol Cell Biol 2005; 25: 4703–4715.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Flavell JR, Baumforth KR, Wood VH, Davies GL, Wei W, Reynolds GM et al. Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 2008; 111: 292–301.

    CAS  PubMed  Google Scholar 

  46. Kim YS, Jung JA, Kim HJ, Ahn YH, Yoo JS, Oh S et al. Galectin-3 binding protein promotes cell motility in colon cancer by stimulating the shedding of protein tyrosine phosphatase kappa by proprotein convertase 5. Biochem Biophys Res Commun 2011; 404: 96–102.

    CAS  PubMed  Google Scholar 

  47. Brady-Kalnay SM . Protein tyrosine phosphatases. In: Beckerle M (ed). Cell Adhesion: Frontiers in Molecular Biology, vol 39. Oxford University Press: Oxford, UK, 217–258.

  48. Craig SE, Brady-Kalnay SM . Cancer cells cut homophilic cell adhesion molecules and run. Cancer Res 2011; 71: 303–309.

    CAS  PubMed  Google Scholar 

  49. Brady-Kalnay SM, Flint AJ, Tonks NK . Homophilic binding of PTP mu, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J Cell Biol 1993; 122: 961–972.

    CAS  PubMed  Google Scholar 

  50. Brady-Kalnay SM, Tonks NK . Identification of the homophilic binding site of the receptor protein tyrosine phosphatase PTP mu. J Biol Chem 1994; 269: 28472–28477.

    CAS  PubMed  Google Scholar 

  51. Gebbink MF, Zondag GC, Wubbolts RW, Beijersbergen RL, van Etten I, Moolenaar WH . Cell-cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J Biol Chem 1993; 268: 16101–16104.

    CAS  PubMed  Google Scholar 

  52. Hellberg CB, Burden-Gulley SM, Pietz GE, Brady-Kalnay SM . Expression of the receptor protein-tyrosine phosphatase, PTPmu, restores E-cadherin-dependent adhesion in human prostate carcinoma cells. J Biol Chem 2002; 277: 11165–11173.

    CAS  PubMed  Google Scholar 

  53. Hiscox S, Jiang WG . Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem Biophys Res Commun 1999; 261: 406–411.

    CAS  PubMed  Google Scholar 

  54. Mourton T, Hellberg CB, Burden-Gulley SM, Hinman J, Rhee A, Brady-Kalnay SM . The PTPmu protein-tyrosine phosphatase binds and recruits the scaffolding protein RACK1 to cell-cell contacts. J Biol Chem 2001; 276: 14896–14901.

    CAS  PubMed  Google Scholar 

  55. Phillips-Mason PJ, Mourton T, Major DL, Brady-Kalnay SM . BCCIP associates with the receptor protein tyrosine phosphatase PTPmu. J Cell Biochem 2008; 105: 1059–1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Phillips-Mason PJ, Kaur H, Burden-Gulley SM, Craig SE, Brady-Kalnay SM . Identification of phospholipase C gamma1 as a protein tyrosine phosphatase mu substrate that regulates cell migration. J Cell Biochem 2011; 112: 39–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Phillips-Mason PJ, Craig SE, Brady-Kalnay SM . Should I stay or should I go? Shedding of RPTPs in cancer cells switches signals from stabilizing cell-cell adhesion to driving cell migration. Cell Adhesion Migration 2011; 5: 298–305.

    PubMed  PubMed Central  Google Scholar 

  58. Burgoyne AM, Phillips-Mason PJ, Burden-Gulley SM, Robinson S, Sloan AE, Miller RH et al. proteolytic cleavage of protein tyrosine phosphatase {micro} regulates glioblastoma cell migration. Cancer Res 2009; 69: 6960–6968.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Phillips-Mason PJ, Craig SE, Brady-Kalnay SM . A protease storm cleaves a cell-cell adhesion molecule in cancer: multiple proteases converge to regulate PTPmu in glioma cells. J Cell Biochem 2014; 115: 1609–1623.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Burden-Gulley SM, Gates TJ, Burgoyne AM, Cutter JL, Lodowski DT, Robinson S et al. A novel molecular diagnostic of glioblastomas: detection of an extracellular fragment of protein tyrosine phosphatase mu. Neoplasia 2010; 12: 305–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ruivenkamp C, Hermsen M, Postma C, Klous A, Baak J, Meijer G et al. LOH of PTPRJ occurs early in colorectal cancer and is associated with chromosomal loss of 18q12-21. Oncogene 2003; 22: 3472–3474.

    CAS  PubMed  Google Scholar 

  62. Lesueur F, Pharoah PD, Laing S, Ahmed S, Jordan C, Smith PL et al. Allelic association of the human homologue of the mouse modifier Ptprj with breast cancer. Hum Mol Genet 2005; 14: 2349–2356.

    CAS  PubMed  Google Scholar 

  63. Iuliano R, Le Pera I, Cristofaro C, Baudi F, Arturi F, Pallante P et al. The tyrosine phosphatase PTPRJ/DEP-1 genotype affects thyroid carcinogenesis. Oncogene 2004; 23: 8432–8438.

    CAS  PubMed  Google Scholar 

  64. Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Guhrs KH et al. Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol 2011; 21: 405–418.

    CAS  PubMed  Google Scholar 

  65. Aya-Bonilla C, Green MR, Camilleri E, Benton M, Keane C, Marlton P et al. High-resolution loss of heterozygosity screening implicates PTPRJ as a potential tumor suppressor gene that affects susceptibility to Non-Hodgkin's lymphoma. Genes Chromosomes Cancer 2013; 52: 467–479.

    CAS  PubMed  Google Scholar 

  66. Luo L, Shen GQ, Stiffler KA, Wang QK, Pretlow TG, Pretlow TP . Loss of heterozygosity in human aberrant crypt foci (ACF), a putative precursor of colon cancer. Carcinogenesis 2006; 27: 1153–1159.

    CAS  PubMed  Google Scholar 

  67. Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, Schackert HK, Gorgens H, Hahn MM et al. Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology 2010; 139: 2221–2224.

    PubMed  Google Scholar 

  68. Iervolino A, Iuliano R, Trapasso F, Viglietto G, Melillo RM, Carlomagno F et al. The receptor-type protein tyrosine phosphatase J antagonizes the biochemical and biological effects of RET-derived oncoproteins. Cancer Res 2006; 66: 6280–6287.

    CAS  PubMed  Google Scholar 

  69. Balavenkatraman KK, Jandt E, Friedrich K, Kautenburger T, Pool-Zobel BL, Ostman A et al. DEP-1 protein tyrosine phosphatase inhibits proliferation and migration of colon carcinoma cells and is upregulated by protective nutrients. Oncogene 2006; 25: 6319–6324.

    CAS  PubMed  Google Scholar 

  70. Trapasso F, Yendamuri S, Dumon KR, Iuliano R, Cesari R, Feig B et al. Restoration of receptor-type protein tyrosine phosphatase eta function inhibits human pancreatic carcinoma cell growth in vitro and in vivo. Carcinogenesis 2004; 25: 2107–2114.

    CAS  PubMed  Google Scholar 

  71. Trapasso F, Iuliano R, Boccia A, Stella A, Visconti R, Bruni P et al. Rat protein tyrosine phosphatase eta suppresses the neoplastic phenotype of retrovirally transformed thyroid cells through the stabilization of p27(Kip1). Mol Cell Biol 2000; 20: 9236–9246.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C, Csikos T et al. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 2002; 31: 295–300.

    CAS  PubMed  Google Scholar 

  73. Trapasso F, Drusco A, Costinean S, Alder H, Aqeilan RI, Iuliano R et al. Genetic ablation of Ptprj, a mouse cancer susceptibility gene, results in normal growth and development and does not predispose to spontaneous tumorigenesis. DNA Cell Biol 2006; 25: 376–382.

    CAS  PubMed  Google Scholar 

  74. Omerovic J, Clague MJ, Prior IA . Phosphatome profiling reveals PTPN2, PTPRJ and PTEN as potent negative regulators of PKB/Akt activation in Ras-mutated cancer cells. Biochem J 2010; 426: 65–72.

    CAS  PubMed  Google Scholar 

  75. Paduano F, Ortuso F, Campiglia P, Raso C, Iaccino E, Gaspari M et al. Isolation and functional characterization of peptide agonists of PTPRJ, a tyrosine phosphatase receptor endowed with tumor suppressor activity. ACS Chem Biol 2012; 7: 1666–1676.

    CAS  PubMed  Google Scholar 

  76. Arora D, Stopp S, Bohmer SA, Schons J, Godfrey R, Masson K et al. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J Biol Chem 2011; 286: 10918–10929.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Casagrande S, Ruf M, Rechsteiner M, Morra L, Brun-Schmid S, von Teichman A et al. The protein tyrosine phosphatase receptor type J is regulated by the pVHL-HIF axis in clear cell renal cell carcinoma. J Pathol 2013; 229: 525–534.

    CAS  PubMed  Google Scholar 

  78. Paduano F, Dattilo V, Narciso D, Bilotta A, Gaudio E, Menniti M et al. Protein tyrosine phosphatase PTPRJ is negatively regulated by microRNA-328. FEBS J 2013; 280: 401–412.

    CAS  PubMed  Google Scholar 

  79. Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G et al. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet 2014; 46: 376–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dominguez MG, Hughes VC, Pan L, Simmons M, Daly C, Anderson K et al. Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo vasculogenesis but die embryonically because of defects in angiogenesis. Proc Natl Acad Sci USA 2007; 104: 3243–3248.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Baumer S, Keller L, Holtmann A, Funke R, August B, Gamp A et al. Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood 2006; 107: 4754–4762.

    PubMed  Google Scholar 

  82. Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F et al. VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol 2009; 185: 657–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A et al. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J 2009; 23: 1490–1502.

    CAS  PubMed  Google Scholar 

  84. Broermann A, Winderlich M, Block H, Frye M, Rossaint J, Zarbock A et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J Exp Med 2011; 208: 2393–2401.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hayashi M, Majumdar A, Li X, Adler J, Sun Z, Vertuani S et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat Commun 2013; 4: 1672.

    PubMed  Google Scholar 

  86. Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT, Kirkpatrick ND et al. Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Clin Inst 2013; 105: 1188–1201.

    CAS  Google Scholar 

  87. Liu X, Qu CK . Protein tyrosine phosphatase SHP-2 (PTPN11) in hematopoiesis and leukemogenesis. J Singnal Transduct 2011; 2011: 195239.

    Google Scholar 

  88. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29: 465–468.

    CAS  PubMed  Google Scholar 

  89. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003; 34: 148–150.

    CAS  PubMed  Google Scholar 

  90. Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP . PTPN11 mutations in LEOPARD syndrome. J Med Genet 2002; 39: 571–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lauriol J, Kontaridis MI . PTPN11-associated mutations in the heart: has LEOPARD changed Its RASpots? Trends Cardiovasc Med 2011; 21: 97–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 2011; 19: 629–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bowen ME, Boyden ED, Holm IA, Campos-Xavier B, Bonafe L, Superti-Furga A et al. Loss-of-function mutations in PTPN11 cause metachondromatosis, but not Ollier disease or Maffucci syndrome. PLoS Genet 2011; 7: e1002050.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang W, Wang J, Moore DC, Liang H, Dooner M, Wu Q et al. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 2013; 499: 491–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Qu CK . Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta 2002; 1592: 297–301.

    CAS  PubMed  Google Scholar 

  96. Zheng H, Li S, Hsu P, Qu CK . Induction of a tumor-associated activating mutation in protein tyrosine phosphatase Ptpn11 (Shp2) enhances mitochondrial metabolism, leading to oxidative stress and senescence. J Biol Chem 2013; 288: 25727–25738.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu X, Zheng H, Qu CK . Protein tyrosine phosphatase Shp2 (Ptpn11) plays an important role in maintenance of chromosome stability. Cancer Res 2012; 72: 5296–5306.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gunawardana J, Chan FC, Telenius A, Woolcock B, Kridel R, Tan KL et al. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet 2014; 46: 329–335.

    CAS  PubMed  Google Scholar 

  99. Yip SC, Saha S, Chernoff J . PTP1B: a double agent in metabolism and oncogenesis. Trends BiochemSci 2010; 35: 442–449.

    CAS  Google Scholar 

  100. Bentires-Alj M, Neel BG . Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res 2007; 67: 2420–2424.

    CAS  PubMed  Google Scholar 

  101. Freiss G, Chalbos D . PTPN13/PTPL1: an important regulator of tumor aggressiveness. Anticancer Agents Med Chem 2011; 11: 78–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ying J, Li H, Cui Y, Wong AH, Langford C, Tao Q . Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 2006; 20: 1173–1175.

    CAS  PubMed  Google Scholar 

  103. Scrima M, De Marco C, De Vita F, Fabiani F, Franco R, Pirozzi G et al. The nonreceptor-type tyrosine phosphatase PTPN13 is a tumor suppressor gene in non-small cell lung cancer. Am J Pathol 2012; 180: 1202–1214.

    CAS  PubMed  Google Scholar 

  104. Wieckowski E, Atarashi Y, Stanson J, Sato TA, Whiteside TL . FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. J Cell Biochem 2007; 100: 16–28.

    CAS  PubMed  Google Scholar 

  105. Nariai Y, Mishima K, Yoshimura Y, Sekine J . FAP-1 and NF-kappaB expressions in oral squamous cell carcinoma as potential markers for chemo-radio sensitivity and prognosis. Int J Oral Maxillofac Surg 2011; 40: 419–426.

    CAS  PubMed  Google Scholar 

  106. Xiao ZY, Wu W, Eagleton N, Chen HQ, Shao J, Teng H et al. Silencing Fas-associated phosphatase 1 expression enhances efficiency of chemotherapy for colon carcinoma with oxaliplatin. World J Gastroenterol 2010; 16: 112–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Revillion F, Puech C, Rabenoelina F, Chalbos D, Peyrat JP, Freiss G . Expression of the putative tumor suppressor gene PTPN13/PTPL1 is an independent prognostic marker for overall survival in breast cancer. Int J Cancer 2009; 124: 638–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhu JH, Chen R, Yi W, Cantin GT, Fearns C, Yang Y et al. Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling. Oncogene 2008; 27: 2525–2531.

    CAS  PubMed  Google Scholar 

  109. Vermeer PD, Bell M, Lee K, Vermeer DW, Wieking BG, Bilal E et al. ErbB2, EphrinB1, Src kinase and PTPN13 signaling complex regulates MAP kinase signaling in human cancers. PLoS One 2012; 7: e30447.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kuchay S, Duan S, Schenkein E, Peschiaroli A, Saraf A, Florens L et al. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol 2013; 15: 472–480.

    CAS  PubMed  Google Scholar 

  111. Huang W, Bei L, Eklund EA . Fas-associated phosphatase 1 (Fap1) influences betacatenin activity in myeloid progenitor cells expressing the Bcr-abl oncogene. J Biol Chem 2013; 288: 12766–12776.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hoover AC, Strand GL, Nowicki PN, Anderson ME, Vermeer PD, Klingelhutz AJ et al. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene 2009; 28: 3960–3970.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hagemann N, Ackermann N, Christmann J, Brier S, Yu F, Erdmann KS . The serologically defined colon cancer antigen-3 interacts with the protein tyrosine phosphatase PTPN13 and is involved in the regulation of cytokinesis. Oncogene 2013; 32: 4602–4613.

    CAS  PubMed  Google Scholar 

  114. Abaan OD, Hendriks W, Uren A, Toretsky JA, Erkizan HV . Valosin containing protein (VCP/p97) is a novel substrate for the protein tyrosine phosphatase PTPL1. Exp Cell Res 2013; 319: 1–11.

    CAS  PubMed  Google Scholar 

  115. Spanos WC, Hoover A, Harris GF, Wu S, Strand GL, Anderson ME et al. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol 2008; 82: 2493–2500.

    CAS  PubMed  Google Scholar 

  116. Schickel R, Park SM, Murmann AE, Peter ME . miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 2010; 38: 908–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang W, Bei L, Eklund EA . Fas-associated phosphatase 1 mediates Fas resistance in myeloid progenitor cells expressing the Bcr-abl oncogene. Leuk Lymphoma 2013; 54: 619–630.

    CAS  PubMed  Google Scholar 

  118. Wyatt L, Khew-Goodall Y . PTP-Pez: a novel regulator of TGFbeta signaling. Cell Cycle 2008; 7: 2290–2295.

    CAS  PubMed  Google Scholar 

  119. Au AC, Hernandez PA, Lieber E, Nadroo AM, Shen YM, Kelley KA et al. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am J Hum Genet 2010; 87: 436–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang W, Huang J, Wang X, Yuan J, Li X, Feng L et al. PTPN14 is required for the density-dependent control of YAP1. Genes Dev 2012; 26: 1959–1971.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y . The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates beta-catenin. Mol Biol Cell 2003; 14: 2520–2529.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang P, Guo A, Possemato A, Wang C, Beard L, Carlin C et al. Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14. Oncogene 2013; 32: 2087–2095.

    CAS  PubMed  Google Scholar 

  123. Michaloglou C, Lehmann W, Martin T, Delaunay C, Hueber A, Barys L et al. The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS ONE 2013; 8: e61916.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang JM, Nagatomo I, Suzuki E, Mizuno T, Kumagai T, Berezov A et al. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 2013; 32: 2220–2229.

    CAS  PubMed  Google Scholar 

  125. Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH et al. PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 2013; 32: 1266–1273.

    PubMed  Google Scholar 

  126. Flint AJ, Tiganis T, Barford D, Tonks NK . Development of ‘substrate-trapping’ mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA 1997; 94: 1680–1685.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Susann Brady-Kalnay for critical reading of the manuscript. This work is supported by NIH grants R01CA127590, P50CA150964 and P30 CA043703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Sedwick, D. & Wang, Z. Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 34, 3885–3894 (2015). https://doi.org/10.1038/onc.2014.326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.326

This article is cited by

Search

Quick links