Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of Dlg5 expression promotes the migration and invasion of prostate cancer cells via Girdin phosphorylation

Abstract

Dlg5 has been reported to participate in cancer progression; however, its role in prostate cancer still remains poorly understood. In this study, we demonstrate that Dlg5 is frequently downregulated in prostate cancer. We show here that Dlg5 is involved in the regulation of cell migration and cancer cell invasion. Knockdown of endogenous Dlg5 markedly increased prostate cancer cell migration and invasion. Our studies, for the first time, demonstrate the interaction between Dlg5 and Girdin, an actin-binding Akt substrate. Importantly, we found that levels of Akt-mediated Girdin phosphorylation (p-Girdin-Ser1416) are increased in Dlg5-depleted cells. Small interfering RNA directed against Girdin and wortmannin treatment, which was found to reduce Girdin phosphorylation, impaired the effect of Dlg5 depletion on cell migration. Taken together, our findings demonstrate that Dlg5 interacts with and inhibits the activity of Girdin, thereby suppressing the migration of prostate cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer Statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  2. Chaffer CL, Weinberg RA . A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.

    Article  CAS  Google Scholar 

  3. Woollard DJ, Opeskin K, Coso S, Wu D, Baldwin ME, Williams ED . Differential expression of VEGF ligands and receptors in prostate cancer. Prostate 2013; 73: 563–572.

    Article  CAS  Google Scholar 

  4. Nakamura H, Sudo T, Tsuiki H, Miyake H, Morisaki T, Sasaki J et al. Identification of a novel human homolog of the Drosophila dlg, P-dlg, specifically expressed in the gland tissues and interacting with p55. Febs Letters 1998; 433: 63–67.

    Article  CAS  Google Scholar 

  5. Shah G, Brugada R, Gonzalez O, Czernuszewicz G, Gibbs RA, Bachinski L et al. The cloning, genomic organization and tissue expression profile of the human DLG5 gene. BMC Genomics 2002; 3: 6.

    Article  Google Scholar 

  6. Wakabayashi M, Ito T, Mitsushima M, Aizawa S, Ueda K, Amachi T et al. Interaction of lp-dlg/KIAA0583, a membrane-associated guanylate kinase family protein, with vinexin and beta-catenin at sites of cell-cell contact. J Biol Chem 2003; 278: 21709–21714.

    Article  CAS  Google Scholar 

  7. Chang Y, Klezovitch O, Walikonis RS, Vasioukhin V, LoTurco JJ . Discs large 5 is required for polarization of citron kinase in mitotic neural precursors. Cell Cycle 2010; 9: 1990–1997.

    Article  CAS  Google Scholar 

  8. Taniuchi K, Nakagawa H, Nakamura T, Eguchi H, Ohigashi H, Ishikawa O et al. Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 2005; 65: 105–112.

    Article  CAS  Google Scholar 

  9. Nechiporuk T, Fernandez TE, Vasioukhin V . Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in dlg5(-1-) mice. Dev Cell 2007; 13: 338–350.

    Article  CAS  Google Scholar 

  10. Smolen GA, Zhang J, Zubrowski MJ, Edelman EJ, Luo B, Yu M et al. A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration. Genes Dev 2010; 24: 2654–2665.

    Article  CAS  Google Scholar 

  11. Nechiporuk T, Klezovitch O, Nguyen L, Vasioukhin V . Dlg5 maintains apical aPKC and regulates progenitor differentiation during lung morphogenesis. Dev Biol 2013; 377: 375–384.

    Article  CAS  Google Scholar 

  12. Aranjuez G, Kudlaty E, Longworth MS, McDonald JA . On the role of PDZ domain-encoding genes in Drosophila border cell migration. G3 (Bethesda) 2012; 2: 1379–1391.

    Article  CAS  Google Scholar 

  13. Sezaki T, Inada K, Sogabe T, Kakuda K, Tomiyama L, Matsuno Y et al. Role of Dlg5/lp-dlg, a membrane-associated guanylate kinase family protein, in epithelial-mesenchymal transition in LLc-PK1 renal epithelial cells. PLoS One 2012; 7: e35519.

    Article  CAS  Google Scholar 

  14. Sezaki T, Tomiyama L, Kimura Y, Ueda K, Kioka N . Dlg5 interacts with the TGF-β receptor and promotes its degradation. FEBS Lett 2013; 587: 1624–1629.

    Article  CAS  Google Scholar 

  15. Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 2004; 36: 476–480.

    Article  CAS  Google Scholar 

  16. Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H, Murata K et al. Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 2004; 23: 2385–2400.

    Article  CAS  Google Scholar 

  17. Goel HL, Li J, Kogan S, Languino LR . Integrins in prostate cancer progression. Endocr Relat Cancer 2008; 15: 657–664.

    Article  CAS  Google Scholar 

  18. Lee YC, Jin JK, Cheng CJ, Huang CF, Song JH, Huang M et al. Targeting constitutively activated beta1 integrins inhibits prostate cancer metastasis. Mol Cancer Res 2013; 11: 405–417.

    Article  CAS  Google Scholar 

  19. Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y . Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene 2010; 29: 4947–4958.

    Article  CAS  Google Scholar 

  20. Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K et al. Akt/PKB regulates actin organization and cell motility via girdin/APE. Developmental Cell 2005; 9: 389–402.

    Article  CAS  Google Scholar 

  21. Garcia-Marcos M, Ghosh P, Farquhar MG . GIV is a nonreceptor GEF for G alpha i with a unique motif that regulates Akt signaling. Proc Natl Acad Sci USA 2009; 106: 3178–3183.

    Article  CAS  Google Scholar 

  22. Jiang P, Enomoto A, Jijiwa M, Kato T, Hasegawa T, Ishida M et al. An actin-binding protein girdin regulates the motility of breast cancer cells. Cancer Res 2008; 68: 1310–1318.

    Article  CAS  Google Scholar 

  23. Ghosh P, Garcia-Marcos M, Bornheimer SJ, Farquhar MG . Activation of G alpha i3 triggers cell migration via regulation of GIV. J Cell Biology 2008; 182: 381–393.

    Article  CAS  Google Scholar 

  24. Altomare DA, Testa JR . Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24: 7455–7464.

    Article  CAS  Google Scholar 

  25. Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S et al. Phosphorylation of Akt (Ser(473)) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res 2004; 64: 5232–5236.

    Article  CAS  Google Scholar 

  26. Hong S-K, Kim J-H, Lin M-F, Park J-I . The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res 2011; 317: 2671–2682.

    Article  CAS  Google Scholar 

  27. Roberts PJ, Der CJ . Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    Article  CAS  Google Scholar 

  28. Enomoto A, Asai N, Namba T, Wang Y, Kato T, Tanaka M et al. Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron 2009; 63: 774–787.

    Article  CAS  Google Scholar 

  29. Miyake H, Maeda K, Asai N, Shibata R, Ichimiya H, Isotani-Sakakibara M et al. The actin-binding protein girdin and its AKT-mediated phosphorylation regulate neointima formation after vascular injury. Circ Res 2011; 108: 1170–U1165.

    Article  CAS  Google Scholar 

  30. Natsume A, Kato T, Kinjo S, Enomoto A, Toda H, Shimato S et al. Girdin maintains the stemness of glioblastoma stem cells. Oncogene 2012; 31: 2715–2724.

    Article  CAS  Google Scholar 

  31. Kitamura T, Asai N, Enomoto A, Maeda K, Kato T, Ishida M et al. Regulation of VeGF-mediated angiogenesis by the Akt/PKB substrate Girdin. Nat Cell Biol 2008; 10: 329–U362.

    Article  CAS  Google Scholar 

  32. Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P . A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Mol Biol Cell 2011; 22: 673–686.

    Article  CAS  Google Scholar 

  33. Garcia-Marcos M, Jung BH, Ear J, Cabrera B, Carethers JM, Ghosh P . Expression of GIV/Girdin, a metastasis-related protein, predicts patient survival in colon cancer. FASEB J 2011; 25: 590–599.

    Article  CAS  Google Scholar 

  34. Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C et al. A G alpha i-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Mol Biol Cell 2010; 21: 2338–2354.

    Article  CAS  Google Scholar 

  35. Lopez-Sanchez I, Garcia-Marcos M, Mittal Y, Aznar N, Farquhar MG, Ghosh P . Protein kinase C-theta (PKC theta) phosphorylates and inhibits the guanine exchange factor GIV/Girdin. Proc Natl Acad Sci USA 2013; 110: 5510–5515.

    Article  CAS  Google Scholar 

  36. Yamashita H, Ueda K, Kioka N . WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions. J Biol Chem 2011; 286: 3907–3914.

    Article  CAS  Google Scholar 

  37. Umemoto T, Tanaka K, Ueda K, Kioka N . Tyrosine phosphorylation of vinexin in v-Src-transformed cells attenuates the affinity for vinculin. Biochem Biophys Res Commun 2009; 387: 191–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Asahi Glass Foundation, a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant from the Bio-oriented Technology Research Advancement Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Kioka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomiyama, L., Sezaki, T., Matsuo, M. et al. Loss of Dlg5 expression promotes the migration and invasion of prostate cancer cells via Girdin phosphorylation. Oncogene 34, 1141–1149 (2015). https://doi.org/10.1038/onc.2014.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.31

This article is cited by

Search

Quick links