Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation

Abstract

Prostate cancer is the second most common cause of cancer-associated deaths in men, and signaling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Consequently, AR target genes are prominent candidates to be specific for prostate cancer and also important for the survival of the cancer cells. Here we assess the levels of all hexosamine biosynthetic pathway (HBP) enzymes in 15 separate clinical gene expression data sets and identify the last enzyme in the pathway, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), to be highly overexpressed in prostate cancer. We analyzed 3261 prostate cancers on a tissue microarray and found that UAP1 staining correlates negatively with Gleason score (P=0.0039) and positively with high AR expression (P<0.0001). Cells with high UAP1 expression have 10-fold increased levels of the HBP end-product, UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is essential for N-linked glycosylation occurring in the endoplasmic reticulum (ER) and high UAP1 expression associates with resistance against inhibitors of N-linked glycosylation (tunicamycin and 2-deoxyglucose) but not with a general ER stress-inducing agent, the calcium ionophore A23187. Knockdown of UAP1 expression re-sensitized cells towards inhibitors of N-linked glycosylation, as measured by proliferation and activation of ER stress markers. Taken together, we have identified an enzyme, UAP1, which is highly overexpressed in prostate cancer and protects cancer cells from ER stress conferring a growth advantage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Harris WP, Mostaghel EA, Nelson PS, Montgomery B . Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 2009; 6: 76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011; 30: 2719–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ, Kim JW et al. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J 2011; 433: 225–233.

    Article  CAS  PubMed  Google Scholar 

  4. Humphrey PA . Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J Clin Pathol 2007; 60: 35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 2002; 62: 2220–2226.

    CAS  PubMed  Google Scholar 

  6. Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW . Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 2004; 64: 2070–2075.

    Article  CAS  PubMed  Google Scholar 

  7. Sartor O, Pal SK . Abiraterone and its place in the treatment of metastatic CRPC. Nat Rev Clin Oncol 2013; 10: 6–8.

    Article  CAS  PubMed  Google Scholar 

  8. Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V et al. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer. Cancer Res 2013; 73: 5277–5287.

    Article  CAS  PubMed  Google Scholar 

  9. Slawson C, Copeland RJ, Hart GW . O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 2010; 35: 547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wellen KE, Thompson CB . A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 2012; 13: 270–276.

    Article  CAS  PubMed  Google Scholar 

  11. Butkinaree C, Park K, Hart GW . O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 2010; 1800: 96–106.

    Article  CAS  PubMed  Google Scholar 

  12. Schwarz F, Aebi M . Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 2011; 21: 576–582.

    Article  CAS  PubMed  Google Scholar 

  13. Dennis JW, Lau KS, Demetriou M, Nabi IR . Adaptive regulation at the cell surface by N-glycosylation. Traffic 2009; 10: 1569–1578.

    Article  CAS  PubMed  Google Scholar 

  14. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007; 129: 123–134.

    Article  CAS  PubMed  Google Scholar 

  15. Chen R, Li J, Feng CH, Chen SK, Liu YP, Duan CY et al. c-Met function requires N-linked glycosylation modification of pro-Met. J Cell Biochem 2013; 114: 816–822.

    Article  CAS  PubMed  Google Scholar 

  16. Dricu A, Carlberg M, Wang M, Larsson O . Inhibition of N-linked glycosylation using tunicamycin causes cell death in malignant cells: role of down-regulation of the insulin-like growth factor 1 receptor in induction of apoptosis. Cancer Res 1997; 57: 543–548.

    CAS  PubMed  Google Scholar 

  17. Itkonen HM, Mills IG . N-linked glycosylation supports cross-talk between receptor tyrosine kinases and androgen receptor. PLoS ONE 2013; 8: e65016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hagisawa S, Ohyama C, Takahashi T, Endoh M, Moriya T, Nakayama J et al. Expression of core 2 beta1,6-N-acetylglucosaminyltransferase facilitates prostate cancer progression. Glycobiology 2005; 15: 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  19. Krzeslak A, Forma E, Bernaciak M, Romanowicz H, Brys M . Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin Exp Med 2012; 12: 61–65.

    Article  CAS  PubMed  Google Scholar 

  20. Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ . Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem 2012; 287: 11070–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta 2011; 1812: 514–519.

    Article  CAS  PubMed  Google Scholar 

  22. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol 2008; 9: R139.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diekman AB, Olson G, Goldberg E . Expression of the human antigen SPAG2 in the testis and localization to the outer dense fibers in spermatozoa. Mol Reprod Dev 1998; 50: 284–293.

    Article  CAS  PubMed  Google Scholar 

  25. Mio T, Yabe T, Arisawa M, Yamada-Okabe H . The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and catalytic mechanism. J Biol Chem 1998; 273: 14392–14397.

    Article  CAS  PubMed  Google Scholar 

  26. Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V et al. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J 2001; 20: 6191–6202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS . Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 1997; 18: 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  28. Berthon P, Cussenot O, Hopwood L, Leduc A, Maitland N . Functional expression of sv40 in normal human prostatic epithelial and fibroblastic cells—differentiation pattern of nontumorigenic cell-lines. Int J Oncol 1995; 6: 333–343.

    CAS  PubMed  Google Scholar 

  29. Nakajima K, Kitazume S, Angata T, Fujinawa R, Ohtsubo K, Miyoshi E et al. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC. Glycobiology 2010; 20: 865–871.

    Article  CAS  PubMed  Google Scholar 

  30. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457: 910–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Monauni T, Zenti MG, Cretti A, Daniels MC, Targher G, Caruso B et al. Effects of glucosamine infusion on insulin secretion and insulin action in humans. Diabetes 2000; 49: 926–935.

    Article  CAS  PubMed  Google Scholar 

  32. Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 2010; 24: 2784–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buse MG . Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 2006; 290: E1–E8.

    Article  CAS  PubMed  Google Scholar 

  34. Bosch RR, Pouwels MJ, Span PN, Olthaar AJ, Tack CJ, Hermus AR et al. Hexosamines are unlikely to function as a nutrient-sensor in 3T3-L1 adipocytes: a comparison of UDP-hexosamine levels after increased glucose flux and glucosamine treatment. Endocrine 2004; 23: 17–24.

    Article  CAS  PubMed  Google Scholar 

  35. Patti ME, Virkamaki A, Landaker EJ, Kahn CR, Yki-Jarvinen H . Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 1999; 48: 1562–1571.

    Article  CAS  PubMed  Google Scholar 

  36. Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M et al. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 2007; 6: 3049–3058.

    Article  CAS  PubMed  Google Scholar 

  37. Xi H, Kurtoglu M, Liu H, Wangpaichitr M, You M, Liu X et al. 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 2011; 67: 899–910.

    Article  CAS  PubMed  Google Scholar 

  38. Gross BJ, Kraybill BC, Walker S . Discovery of O-GlcNAc transferase inhibitors. J Am Chem Soc 2005; 127: 14588–14589.

    Article  CAS  PubMed  Google Scholar 

  39. Bassik MC, Kampmann M . Knocking out the door to tunicamycin entry. Proc Natl Acad Sci USA 2011; 108: 11731–11732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keller RK, Boon DY, Crum FC . N-Acetylglucosamine- 1 -phosphate transferase from hen oviduct: solubilization, characterization, and inhibition by tunicamycin. Biochemistry 1979; 18: 3946–3952.

    Article  CAS  PubMed  Google Scholar 

  41. Grassian AR, Coloff JL, Brugge JS . Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb Symp Quant Biol 2011; 76: 313–324.

    Article  CAS  PubMed  Google Scholar 

  42. Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 2007; 282: 4702–4710.

    Article  CAS  PubMed  Google Scholar 

  43. Johansen T, Lamark T . Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011; 7: 279–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL . Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11: 558–572.

    Article  CAS  PubMed  Google Scholar 

  45. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR et al. Spliced x-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 2014; 156: 1179–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Braga-Basaria M, Dobs AS, Muller DC, Carducci MA, John M, Egan J et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol 2006; 24: 3979–3983.

    Article  PubMed  Google Scholar 

  48. Gunter JH, Sarkar PL, Lubik AA, Nelson CC . New players for advanced prostate cancer and the rationalisation of insulin-sensitising medication. Int J Cell Biol 2013; 2013: 834684.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Derweesh IH, Diblasio CJ, Kincade MC, Malcolm JB, Lamar KD, Patterson AL et al. Risk of new-onset diabetes mellitus and worsening glycaemic variables for established diabetes in men undergoing androgen-deprivation therapy for prostate cancer. BJU Int 2007; 100: 1060–1065.

    PubMed  Google Scholar 

Download references

Acknowledgements

HMI is funded by an Early Stage Researcher fellowship as part of the EU FP7 Marie Curie Integrated Training Network, PRO-NEST (Prostate Research Organizations – Network Early Stage Training) Norwegian Cancer Society and Finnish Cultural Foundation. IGM is supported by funding from the Norwegian Research Council, Helse and the University of Oslo through the Centre for Molecular Medicine (Norway), which is a part of the Nordic EMBL (European Molecular Biology Laboratory) partnership. IGM is also supported by the Norwegian Cancer Society and by EU FP7 funding. IGM holds a visiting scientist position with Cancer Research UK through the Cambridge Research Institute and a Senior Visiting Research Fellowship with Cambridge University through the Department of Oncology. We thank Professor Olli Kallioniemi’s group (Institute for Molecular Medicine Finland, Helsinki, Finland) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H M Itkonen or I G Mills.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itkonen, H., Engedal, N., Babaie, E. et al. UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene 34, 3744–3750 (2015). https://doi.org/10.1038/onc.2014.307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.307

This article is cited by

Search

Quick links