Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing

Abstract

The Pim protein kinases contribute to transformation by enhancing the activity of oncogenic Myc and Ras, which drives significant metabolic changes during tumorigenesis. In this report, we demonstrate that mouse embryo fibroblasts (MEFs) lacking all three isoforms of Pim protein kinases, triple knockout (TKO), cannot tolerate the expression of activated K-Ras (K-RasG12V) and undergo cell death. Transduction of K-RasG12V into these cells markedly increased the level of cellular reactive oxygen species (ROS). The addition of N-acetyl cysteine attenuated ROS production and reversed the cytotoxic effects of K-RasG12V in the TKO MEFs. The altered cellular redox state caused by the loss of Pim occurred as a result of lower levels of metabolic intermediates in the glycolytic and pentose phosphate pathways as well as abnormal mitochondrial oxidative phosphorylation. TKO MEFs exhibit reduced levels of superoxide dismutase (Sod), glutathione peroxidase 4 (Gpx4) and peroxiredoxin 3 (Prdx3) that render them susceptible to killing by K-RasG12V-mediated ROS production. In contrast, the transduction of c-Myc into TKO cells can overcome the lack of Pim protein kinases by regulating cellular metabolism and Sod2. In the absence of the Pim kinases, c-Myc transduction permitted K-RasG12V-induced cell growth by decreasing Ras-induced cellular ROS levels. These results demonstrate that the Pim protein kinases have an important role in regulating cellular redox, metabolism and K-Ras-stimulated cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 1991; 11: 1176–1179.

    Article  CAS  Google Scholar 

  2. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989; 56: 673–682.

    Article  CAS  Google Scholar 

  3. Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn MC, Duyster J et al. Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL. Cancer Res 2006; 66: 3828–3835.

    Article  CAS  Google Scholar 

  4. Agrawal S, Koschmieder S, Baumer N, Reddy NG, Berdel WE, Muller-Tidow C et al. Pim2 complements Flt3 wild-type receptor in hematopoietic progenitor cell transformation. Leukemia 2008; 22: 78–86.

    Article  CAS  Google Scholar 

  5. Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 2005; 105: 1759–1767.

    Article  CAS  Google Scholar 

  6. Wang J, Anderson PD, Luo W, Gius D, Roh M, Abdulkadir SA . Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene 2012; 31: 1794–1803.

    Article  CAS  Google Scholar 

  7. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010; 18 207–219.

    Article  CAS  Google Scholar 

  8. Beharry Z, Mahajan S, Zemskova M, Lin YW, Tholanikunnel BG, Xia Z et al. The Pim protein kinases regulate energy metabolism and cell growth. Proc Natl Acad Sci USA 2011; 108: 528–533.

    Article  CAS  Google Scholar 

  9. Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E, Karnezis AN et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013; 27: 504–513.

    Article  CAS  Google Scholar 

  10. Tran PT, Fan AC, Bendapudi PK, Koh S, Komatsubara K, Chen J et al. Combined Inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung adenocarcinomas and lymphomas. PLoS ONE 2008; 3: e2125.

    Article  Google Scholar 

  11. Compere SJ, Baldacci P, Sharpe AH, Thompson T, Land H, Jaenisch R . The ras and myc oncogenes cooperate in tumor induction in many tissues when introduced into midgestation mouse embryos by retroviral vectors. Proc Natl Acad Sci USA 1989; 86: 2224–2228.

    Article  CAS  Google Scholar 

  12. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656–670.

    Article  CAS  Google Scholar 

  13. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 2011; 7: 523.

    Article  Google Scholar 

  14. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101–105.

    Article  CAS  Google Scholar 

  15. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107: 8788–8793.

    Article  CAS  Google Scholar 

  16. Mitsushita J, Lambeth JD, Kamata T . The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 2004; 64: 3580–3585.

    Article  CAS  Google Scholar 

  17. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275: 21797–21800.

    Article  CAS  Google Scholar 

  18. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.

    Article  CAS  Google Scholar 

  19. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 2012; 109: 8983–8988.

    Article  CAS  Google Scholar 

  20. Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci USA 2012; 109: E187–E196.

    Article  CAS  Google Scholar 

  21. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.

    Article  CAS  Google Scholar 

  22. Wang X, Magnuson S, Pastor R, Fan E, Hu H, Tsui V et al. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorg Med Chem Lett 2013; 23: 3149–3153.

    Article  CAS  Google Scholar 

  23. Lu J, Zavorotinskaya T, Dai Y, Niu XH, Castillo J, Sim J et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood 2013; 122: 1610–1620.

    Article  CAS  Google Scholar 

  24. Garcia PD, Langowski JL, Wang Y, Chen M, Castillo J, Fanton C et al. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res 2014; 20: 1834–1845.

    Article  CAS  Google Scholar 

  25. Gomez-Duran A, Pacheu-Grau D, Martinez-Romero I, Lopez-Gallardo E, Lopez-Perez MJ, Montoya J et al. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber's hereditary optic neuropathy. Biochim Biophys Acta 2012; 1822: 1216–1222.

    Article  CAS  Google Scholar 

  26. Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, Fang HB et al. PGC1alpha promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res 2011; 71: 6888–6898.

    Article  CAS  Google Scholar 

  27. Ziegler M . New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem 2000; 267: 1550–1564.

    Article  CAS  Google Scholar 

  28. Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 2013; 123: 1068–1081.

    Article  CAS  Google Scholar 

  29. Gorrini C, Harris IS, Mak TW . Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931–947.

    Article  CAS  Google Scholar 

  30. Gaetani GF, Galiano S, Canepa L, Ferraris AM, Kirkman HN . Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood 1989; 73: 334–339.

    CAS  PubMed  Google Scholar 

  31. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156: 317–331.

    Article  CAS  Google Scholar 

  32. Podsypanina K, Politi K, Beverly LJ, Varmus HE . Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci USA 2008; 105: 5242–5247.

    Article  CAS  Google Scholar 

  33. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P . Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 1987; 49: 465–475.

    Article  CAS  Google Scholar 

  34. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 2005; 25: 6225–6234.

    Article  CAS  Google Scholar 

  35. de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL et al. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer 2009; 8: 54.

    Article  Google Scholar 

  36. Telang S, Lane AN, Nelson KK, Arumugam S, Chesney J . The oncoprotein H-RasV12 increases mitochondrial metabolism. Mol Cancer 2007; 6: 77.

    Article  Google Scholar 

  37. Pitkanen S, Robinson BH . Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 1996; 98: 345–351.

    Article  CAS  Google Scholar 

  38. Diaz F, Garcia S, Padgett KR, Moraes CT . A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum Mol Genet 2012; 21: 5066–5077.

    Article  CAS  Google Scholar 

  39. Peek CB, Affinati AH, Ramsey KM, Kuo HY, Yu W, Sena LA et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013; 342: 1243417.

    Article  Google Scholar 

  40. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004; 24: 6104–6115.

    Article  CAS  Google Scholar 

  41. Cai H, Memarzadeh S, Stoyanova T, Beharry Z, Kraft AS, Witte ON . Collaboration of KRas and androgen receptor signaling stimulates EZH2 expression and tumor-propagating cells in prostate cancer. Cancer Res 2012; 72: 4672–4681.

    Article  CAS  Google Scholar 

  42. Song JH, Kraft AS . Pim kinase inhibitors sensitize prostate cancer cells to apoptosis triggered by Bcl-2 family inhibitor ABT-737. Cancer Res 2012; 72: 294–303.

    Article  CAS  Google Scholar 

  43. Song JH, Bellail A, Tse MC, Yong VW, Hao C . Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J Neurosci 2006; 26: 3299–3308.

    Article  CAS  Google Scholar 

  44. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med 2013; 5: 195ra95.

    Article  Google Scholar 

  45. Weiner J 3rd, Parida SK, Maertzdorf J, Black GF, Repsilber D, Telaar A et al. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS ONE 2012; 7: e40221.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Genomics Shared Resource at Hollings Cancer Center and Seahorse Biosciences Academic Core Facility, Medical University of South Carolina. We thank Dr Allen J Ebens at Genentech Inc. and Novartis Oncology for providing the Pim kinase inhibitors used in this study. This work was supported by the NIH P30-CA138313, DOD W81XWH-08-PCRP-IDA, R01 CA1732000, and American Cancer Society Institutional Research Grant awarded to the Hollings Cancer Center, Medical University of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J H Song or A S Kraft.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., An, N., Chatterjee, S. et al. Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing. Oncogene 34, 3728–3736 (2015). https://doi.org/10.1038/onc.2014.306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.306

This article is cited by

Search

Quick links