Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a

Abstract

Progesterone (P4) has emerged as an important hormone-regulating mammary stem cell (MaSC) populations. In breast cancer, P4 and synthetic analogs increase the number of stem-like cells within luminal estrogen receptor (ER)- and progesterone receptor (PR)-positive breast cancers. These cells gain expression of de-differentiated cell markers CD44 and cytokeratin 5 (CK5), lose luminal markers ER and PR, and are more therapy resistant. We previously described that P4 downregulation of microRNA (miR)-29a contributes to the expansion of CD44high and CK5+ cells. Here we investigated P4 downregulation of miR-141, a member of the miR-200 family of tumor suppressors, in facilitating an increase in stem-like breast cancer cells. miR-141 was the sole member of the miR-200 family P4-downregulated at the mature miRNA level in luminal breast cancer cell lines. Stable inhibition of miR-141 alone increased the CD44high population, and potentiated P4-mediated increases in both CD44high and CK5+ cells. Loss of miR-141 enhanced both mammosphere formation and tumor initiation. miR-141 directly targeted both PR and signal transducer and activator of transcription 5A (Stat5a), transcription factors important for MaSC expansion. miR-141 depletion increased PR protein levels, even in cell lines where PR expression is estrogen dependent. Stat5a suppression via small interfering RNA or a small-molecule inhibitor reduced the P4-dependent increase in CK5+ and CD44high cells. These data support a mechanism by which P4-triggered loss of miR-141 facilitates breast cancer cell de-differentiation through deregulation of PR and Stat5a, two transcription factors important for controlling mammary cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ismail PM, Amato P, Soyal SM, DeMayo FJ, Conneely OM, O'Malley BW et alProgesterone involvement in breast development and tumorigenesis–as revealed by progesterone receptor ‘knockout’ and ‘knockin‘ mouse models. Steroids 2003; 68: 779–787.

    Article  CAS  PubMed  Google Scholar 

  2. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et alControl of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.

    Article  CAS  PubMed  Google Scholar 

  3. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et alProgesterone induces adult mammary stem cell expansion. Nature 2010; 465: 803–807.

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R et alRANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010; 468: 103–107.

    Article  CAS  PubMed  Google Scholar 

  5. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ et alOsteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 2010; 468: 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI et alDNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 2009; 150: 3318–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanos T, Sflomos G, Echeverria PC, Ayyanan A, Gutierrez M, Delaloye JF et alProgesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med 2013; 5: 182ra55.

    Article  PubMed  Google Scholar 

  8. Horwitz KB, Sartorius CA . Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab 2008; 93: 3295–3298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA . Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 2008; 105: 5774–5779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sartorius CA, Harvell DM, Shen T, Horwitz KB . Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res 2005; 65: 9779–9788.

    Article  CAS  PubMed  Google Scholar 

  11. Axlund SD, Yoo BH, Rosen RB, Schaack J, Kabos P, Labarbera DV et alProgesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Horm Cancer 2013; 4: 36–49.

    Article  CAS  PubMed  Google Scholar 

  12. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et alAberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  13. Bocker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P et alCommon adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest 2002; 82: 737–746.

    Article  PubMed  Google Scholar 

  14. Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A et alCytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 2011; 128: 45–55.

    Article  CAS  PubMed  Google Scholar 

  15. Finnegan EF, Pasquinelli AE MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 2013; 48: 51–68.

    Article  CAS  PubMed  Google Scholar 

  16. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et alMicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  17. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et alThe miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  18. Howe EN, Cochrane DR, Richer JK Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 2011; 13: R45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 2009; 8: 1055–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 2007; 67: 7972–7976.

    Article  CAS  PubMed  Google Scholar 

  21. Park SM, Gaur AB, Lengyel E, Peter ME The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol 2012; 355: 15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cochrane DR, Spoelstra NS, Richer JK The role of miRNAs in progesterone action. Mol Cell Endocrinol 2011; 357: 50–59.

    Article  PubMed  Google Scholar 

  24. Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P et alProgestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 2013; 32: 2555–2564.

    Article  CAS  PubMed  Google Scholar 

  25. Reya T, Morrison SJ, Clarke MF, Weissman IL Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  26. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et alResidual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106: 13820–13825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO et alNormal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011; 108: 7950–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iliopoulos D, Hirsch HA, Wang G, Struhl K Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 2011; 108: 1397–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Edwards DP, Leonhardt SA, Gass-Handel E Novel mechanisms of progesterone antagonists and progesterone receptor. J Soc Gynecol Investig 2000; 7 (1 Suppl): S22–S24.

    Article  CAS  PubMed  Google Scholar 

  30. Richer JK, Lange CA, Manning NG, Owen G, Powell R, Horwitz KB Convergence of progesterone with growth factor and cytokine signaling in breast cancer. Progesterone receptors regulate signal transducers and activators of transcription expression and activity. J Biol Chem 1998; 273: 31317–31326.

    Article  CAS  PubMed  Google Scholar 

  31. Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW et alDevelopment of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 2009; 23: 2382–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, Trompeter HI et alRole of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes 2010; 3: 219.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guil S, Caceres JF The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 2007; 14: 591–596.

    Article  CAS  PubMed  Google Scholar 

  34. Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res 2012; 72: 3393–3404.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et alDownregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pillai MM, Gillen AE, Yamamoto TM, Kline E, Brown J, Flory K et alHITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer. Breast Cancer Res Treat 2014; 146: 85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H et alTwo distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 1990; 9: 1603–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997; 11: 179–186.

    Article  CAS  PubMed  Google Scholar 

  40. Vafaizadeh V, Klemmt P, Brendel C, Weber K, Doebele C, Britt K et alMammary epithelial reconstitution with gene-modified stem cells assigns roles to Stat5 in luminal alveolar cell fate decisions, differentiation, involution, and mammary tumor formation. Stem Cells 2010; 28: 928–938.

    CAS  PubMed  Google Scholar 

  41. Santos SJ, Haslam SZ, Conrad SE Estrogen and progesterone are critical regulators of Stat5a expression in the mouse mammary gland. Endocrinology 2008; 149: 329–338.

    Article  CAS  PubMed  Google Scholar 

  42. Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB et alThe STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 2011; 117: 3421–3429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reid BG, Jerjian T, Patel P, Zhou Q, Yoo BH, Kabos P et alLive multicellular tumor spheroid models for high-content imaging and screening in cancer drug discovery. Curr Chem Genomics Transl Med 2014; 8 (Suppl 1): 27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Obr AE, Edwards DP The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357: 4–17.

    Article  CAS  PubMed  Google Scholar 

  45. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20: 2202–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chatterjee S, Grosshans H Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 2009; 461: 546–549.

    Article  CAS  PubMed  Google Scholar 

  47. Grosshans H, Chatterjee S MicroRNAses and the regulated degradation of mature animal miRNAs. Adv Exp Med Biol 2010; 700: 140–155.

    Article  CAS  PubMed  Google Scholar 

  48. Schwab R, Speth C, Laubinger S, Voinnet O Enhanced microRNA accumulation through stemloop-adjacent introns. EMBO Rep 2013; 14: 615–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D et alAnalysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 2011; 39: 5692–5703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA et alAn HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 2011; 147: 1233–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haga CL, Phinney DG MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J Biol Chem 2012; 287: 42695–42707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39: 761–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Liu H, Jin X, Lo L, Liu J Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics 2012; 13: 731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vafaizadeh V, Klemmt PA, Groner B Stat5 assumes distinct functions in mammary gland development and mammary tumor formation. Front Biosci 2012; 17: 1232–1250.

    Article  CAS  Google Scholar 

  55. Sato T, Tran TH, Peck AR, Girondo MA, Liu C, Goodman CR et alProlactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression. Oncogene 2013; 33: 2215–2224.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Howell SJ, Anderson E, Hunter T, Farnie G, Clarke RB Prolactin receptor antagonism reduces the clonogenic capacity of breast cancer cells and potentiates doxorubicin and paclitaxel cytotoxicity. Breast Cancer Res 2008; 10: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rouet V, Bogorad RL, Kayser C, Kessal K, Genestie C, Bardier A et alLocal prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proc Natl Acad Sci USA 2010; 107: 15199–15204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamashita H, Nishio M, Ando Y, Zhang Z, Hamaguchi M, Mita K et alStat5 expression predicts response to endocrine therapy and improves survival in estrogen receptor-positive breast cancer. Endocr Relat Cancer 2006; 13: 885–893.

    Article  CAS  PubMed  Google Scholar 

  59. Clark GM, McGuire WL Prognostic factors in primary breast cancer. Breast Cancer Res Treat 1983; 3 (Suppl 1): S69–S72.

    Article  PubMed  Google Scholar 

  60. Wagner KU, Rui H Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia 2008; 13: 93–103.

    Article  PubMed  Google Scholar 

  61. Pfaffl MW A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J et alPatient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 2012; 135: 415–432.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the University of Colorado Cancer Center Flow Cytometry and Tissue Culture Cores supported by P30CA046934 and the University of Colorado, Department of Pathology Sequencing Core for their technical assistance and services. This work was supported by Department of Defense BCRP grants W81XWH-11-1-0210 (CAS, JKR) and W81XWH-11-1-0101 (DMC) and NIH R01 CA140985 (CAS). PK was supported by NIH K08 CA164048.

Author Contributions

JF-S and PH performed most of the studies. DMC performed experiments in Figures 2a, b and 5c, d. PP performed experiments in Figure 3a. PK provided the PR exonic-binding site for miR-141 (Figure 4c) and technical advice. JF-S, DMC, BMJ, JKR and CAS contributed intellectual design and interpretation of results. JFS wrote the manuscript. BMJ, JKR and CAS provided editorial assistance. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Finlay-Schultz or C A Sartorius.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finlay-Schultz, J., Cittelly, D., Hendricks, P. et al. Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Oncogene 34, 3676–3687 (2015). https://doi.org/10.1038/onc.2014.298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.298

This article is cited by

Search

Quick links