Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification

Abstract

Glioblastomas (GBM) are highly radioresistant and lethal brain tumors. Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are a risk factor for the development of GBM. In this study, we systematically examined the contribution of IR-induced DSBs to GBM development using transgenic mouse models harboring brain-targeted deletions of key tumor suppressors frequently lost in GBM, namely Ink4a, Ink4b, Arf and/or PTEN. Using low linear energy transfer (LET) X-rays to generate simple breaks or high LET HZE particles (Fe ions) to generate complex breaks, we found that DSBs induce high-grade gliomas in these mice which, otherwise, do not develop gliomas spontaneously. Loss of Ink4a and Arf was sufficient to trigger IR-induced glioma development but additional loss of Ink4b significantly increased tumor incidence. We analyzed IR-induced tumors for copy number alterations to identify oncogenic changes that were generated and selected for as a consequence of stochastic DSB events. We found Met amplification to be the most significant oncogenic event in these radiation-induced gliomas. Importantly, Met activation resulted in the expression of Sox2, a GBM cancer stem cell marker, and was obligatory for tumor formation. In sum, these results indicate that radiation-induced DSBs cooperate with loss of Ink4 and Arf tumor suppressors to generate high-grade gliomas that are commonly driven by Met amplification and activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21: 2683–2710.

    Article  CAS  Google Scholar 

  2. Westphal M, Lamszus K . The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 2011; 12: 495–508.

    Article  CAS  Google Scholar 

  3. Purow B, Schiff D . Advances in the genetics of glioblastoma: are we reaching critical mass? Nat Rev Neurol 2009; 5: 419–426.

    Article  CAS  Google Scholar 

  4. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il'yasova D et al Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008; 113: 1953–1968.

    Article  Google Scholar 

  5. Ron E . Ionizing radiation and cancer risk: evidence from epidemiology. Pediatr Radiol 2002; 32: 232–237 discussion 42-4.

    Article  Google Scholar 

  6. Neglia JP, Meadows AT, Robison LL, Kim TH, Newton WA, Ruymann FB et al Second neoplasms after acute lymphoblastic leukemia in childhood. New Engl J Med 1991; 325: 1330–1336.

    Article  CAS  Google Scholar 

  7. Salvati M, Frati A, Russo N, Caroli E, Polli FM, Minniti G et al Radiation-induced gliomas: report of 10 cases and review of the literature. Surg Neurol 2003; 60: 60–67, discussion 7.

    Article  Google Scholar 

  8. Thierry-Chef I, Simon SL, Land CE, Miller DL . Radiation dose to the brain and subsequent risk of developing brain tumors in pediatric patients undergoing interventional neuroradiology procedures. Radiat Res 2008; 170: 553–565.

    Article  CAS  Google Scholar 

  9. Paulino AC, Mai WY, Chintagumpala M, Taher A, Teh BS . Radiation-induced malignant gliomas: is there a role for reirradiation? Int J Radiat Oncol Biol Phys 2008; 71: 1381–1387.

    Article  Google Scholar 

  10. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP et al Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380: 499–505.

    Article  Google Scholar 

  11. Durante M, Cucinotta FA . Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 2008; 8: 465–472.

    Article  CAS  Google Scholar 

  12. Okayasu R . Repair of DNA damage induced by accelerated heavy ions—a mini review. Int J Cancer 2012; 130: 991–1000.

    Article  CAS  Google Scholar 

  13. Sage E, Harrison L . Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res 2011; 711: 123–133.

    Article  CAS  Google Scholar 

  14. Khanna KK, Jackson SP . DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247–254.

    Article  CAS  Google Scholar 

  15. Camacho CV, Mukherjee B, McEllin B, Ding LH, Hu B, Habib AA et al Loss of p15/Ink4b accompanies tumorigenesis triggered by complex DNA double-strand breaks. Carcinogenesis 2010; 31: 1889–1896.

    Article  CAS  Google Scholar 

  16. Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S et al EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 2009; 69: 4252–4259.

    Article  CAS  Google Scholar 

  17. Sutter R, Yadirgi G, Marino S . Neural stem cells, tumour stem cells and brain tumours: dangerous relationships? Biochim Biophys Acta 2007; 1776: 125–137.

    CAS  PubMed  Google Scholar 

  18. Hambardzumyan D, Parada LF, Holland EC, Charest A . Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia 2011; 59: 1155–1168.

    Article  Google Scholar 

  19. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109.

    Article  Google Scholar 

  20. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D et al Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci USA 2007; 104: 20007–20012.

    Article  CAS  Google Scholar 

  21. Fischer U, Muller HW, Sattler HP, Feiden K, Zang KD, Meese E . Amplification of the MET gene in glioma. Genes Chromosomes Cancer 1995; 12: 63–65.

    Article  CAS  Google Scholar 

  22. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC et al Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013; 110: 4009–4014.

    Article  CAS  Google Scholar 

  23. Smolen GA, Muir B, Mohapatra G, Barmettler A, Kim WJ, Rivera MN et al Frequent met oncogene amplification in a Brca1/Trp53 mouse model of mammary tumorigenesis. Cancer Res 2006; 66: 3452–3455.

    Article  CAS  Google Scholar 

  24. Bigner SH, Humphrey PA, Wong AJ, Vogelstein B, Mark J, Friedman HS et al Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990; 50: 8017–8022.

    CAS  PubMed  Google Scholar 

  25. Li Y, Li A, Glas M, Lal B, Ying M, Sang Y et al c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA. 2011; 108: 9951–9956.

    Article  CAS  Google Scholar 

  26. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis M et alComprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  CAS  Google Scholar 

  27. Attolini CS, Cheng YK, Beroukhim R, Getz G, Abdel-Wahab O, Levine RL et al A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc Natl Acad Sci USA. 2010; 107: 17604–17609.

    Article  CAS  Google Scholar 

  28. Mukherjee B, Camacho CV, Tomimatsu N, Miller J, Burma S . Modulation of the DNA-damage response to HZE particles by shielding. DNA Repair (Amst) 2008; 7: 1717–1730.

    Article  CAS  Google Scholar 

  29. Costes SV, Boissiere A, Ravani S, Romano R, Parvin B, Barcellos-Hoff MH . Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat Res 2006; 165: 505–515.

    Article  CAS  Google Scholar 

  30. Saha J, Wang M, Cucinotta FA . Investigation of switch from ATM to ATR signaling at the sites of DNA damage induced by low and high LET radiation. DNA Repair (Amst) 2013; 12: 1143–1151.

    Article  CAS  Google Scholar 

  31. Wang H, Wang X, Zhang P, Wang Y . The Ku-dependent non-homologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation. DNA Repair (Amst) 2008; 7: 725–733.

    Article  CAS  Google Scholar 

  32. Yajima H, Fujisawa H, Nakajima NI, Hirakawa H, Jeggo PA, Okayasu R et al The complexity of DNA double strand breaks is a critical factor enhancing end-resection. DNA Repair (Amst) 2013; 12: 936–946.

    Article  CAS  Google Scholar 

  33. Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J et al p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007; 448: 943–946.

    Article  CAS  Google Scholar 

  34. Trusolino L, Bertotti A, Comoglio PM . MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11: 834–848.

    Article  CAS  Google Scholar 

  35. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G . Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012; 12: 89–103.

    Article  CAS  Google Scholar 

  36. De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R et al The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res 2012; 72: 4537–4550.

    Article  CAS  Google Scholar 

  37. Joo KM, Jin J, Kim E, Ho Kim K, Kim Y, Gu Kang B et al MET signaling regulates glioblastoma stem cells. Cancer Res 2012; 72: 3828–3838.

    Article  CAS  Google Scholar 

  38. Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI et al A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 2002; 1: 89–97.

    Article  CAS  Google Scholar 

  39. Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE et al The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res 2005; 65: 9355–9362.

    Article  CAS  Google Scholar 

  40. Laterra J, Rosen E, Nam M, Ranganathan S, Fielding K, Johnston P . Scatter factor/hepatocyte growth factor expression enhances human glioblastoma tumorigenicity and growth. Biochem Biophys Res Commun 1997; 235: 743–747.

    Article  CAS  Google Scholar 

  41. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    Article  CAS  Google Scholar 

  42. Jun HJ, Acquaviva J, Chi D, Lessard J, Zhu H, Woolfenden S et al Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene 2012; 31: 3039–3050.

    Article  CAS  Google Scholar 

  43. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010; 17: 77–88.

    Article  CAS  Google Scholar 

  44. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318: 287–290.

    Article  CAS  Google Scholar 

  45. De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T et al Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst 2011; 103: 645–661.

    Article  CAS  Google Scholar 

  46. Liu W, Fu Y, Xu S, Ding F, Zhao G, Zhang K et al c-Met expression is associated with time to recurrence in patients with glioblastoma multiforme. J Clin Neurosci 2011; 18: 119–121.

    Article  CAS  Google Scholar 

  47. Isaka F, Ishibashi M, Taki W, Hashimoto N, Nakanishi S, Kageyama R . Ectopic expression of the bHLH gene Math1 disturbs neural development. Eur J Neurosci 1999; 11: 2582–2588.

    Article  CAS  Google Scholar 

  48. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A . Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001; 413: 83–86.

    Article  CAS  Google Scholar 

  49. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM et al Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 1999; 96: 1563–1568.

    Article  CAS  Google Scholar 

  50. Scotto L, Narayan G, Nandula SV, Subramaniyam S, Kaufmann AM, Wright JD et al Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol Cancer 2008; 7: 58.

    Article  Google Scholar 

Download references

Acknowledgements

SB is supported by grants from the National Aeronautics and Space Administration (NNX13AI13G), National Institutes of Health (RO1 CA149461) and the Cancer Prevention and Research Institute of Texas (RP100644). AAH is supported by a National Institutes of Health grant (R01 NS062080). MCH is supported by a National Institute of General Medical Sciences training grant 5T32GM008203 in cellular and molecular biology. CVC was supported by a NCI training grant (T32CA124334). CVC completed this work in partial fulfillment of the requirements for her PhD degree. We thank Dr Chaitanya Nirodi for valuable advice on cloning and lentivirus production strategies. We also thank the support staff at the NASA Space Radiation Research Laboratory, Brookhaven National Laboratory, Upton, NY, USA, for facilitating particle radiation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Burma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, C., Todorova, P., Hardebeck, M. et al. DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene 34, 1064–1072 (2015). https://doi.org/10.1038/onc.2014.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.29

This article is cited by

Search

Quick links