Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer

Abstract

Targeted cancer therapies, although often effective, have limited utility owing to preexisting primary or acquired secondary resistance. Consequently, agents are sometimes used in combination to simultaneously affect multiple targets. MicroRNA mimics are excellent therapeutic candidates because of their ability to repress multiple oncogenic pathways at once. Here we treated the aggressive Kras;p53 non-small cell lung cancer mouse model and demonstrated efficacy with a combination of two tumor-suppressive microRNAs (miRNAs). Systemic nanodelivery of miR-34 and let-7 suppressed tumor growth leading to survival advantage. This combinatorial miRNA therapeutic approach engages numerous components of tumor cell-addictive pathways and highlights the ability to deliver multiple miRNAs in a safe and effective manner to target lung tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. National Lung Screening Trial Research Team, National Lung Screening Trial Research Team Aberle DR, National Lung Screening Trial Research Team Berg CD, National Lung Screening Trial Research Team Black WC, National Lung Screening Trial Research Team Church TR, National Lung Screening Trial Research Team Fagerstrom RM et al. The National Lung Screening Trial: overview and study design. Radiology 2011; 258: 243–253.

    Article  Google Scholar 

  2. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.

    Article  CAS  Google Scholar 

  3. Lin P-Y, Yu S-L, Yang P-C . MicroRNA in lung cancer. Br J Cancer 2010; 103: 1144–1148.

    Article  CAS  Google Scholar 

  4. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  Google Scholar 

  5. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    Article  CAS  Google Scholar 

  6. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298–1307.

    Article  CAS  Google Scholar 

  7. Lodygin D, Lodygin D, Tarasov V, Tarasov V, Epanchintsev A, Epanchintsev A et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7: 2591–2600.

    Article  CAS  Google Scholar 

  8. Gallardo E, Navarro A, Viñolas N, Marrades RM, Diaz T, Gel B et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 2009; 30: 1903–1909.

    Article  CAS  Google Scholar 

  9. Lee YS, Dutta A . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21: 1025–1030.

    Article  CAS  Google Scholar 

  10. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    Article  CAS  Google Scholar 

  11. Wei JS, Song YK, Durinck S, Chen Q-R, Cheuk ATC, Tsang P et al. The MYCN oncogene is a direct target of miR-34a. Oncogene 2008; 27: 5204–5213.

    Article  CAS  Google Scholar 

  12. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  Google Scholar 

  13. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6: 1586–1593.

    Article  CAS  Google Scholar 

  14. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.

    Article  CAS  Google Scholar 

  15. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  Google Scholar 

  16. Zhao J, Lammers P, Torrance CJ, Bader AG . TP53-independent function of miR-34a via HDAC1 and p21(CIP1/WAF1.). Mol Ther 2013; 21: 1678–1686.

    Article  CAS  Google Scholar 

  17. Kasinski AL, Slack FJ . MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11: 849–864.

    Article  CAS  Google Scholar 

  18. Olsen PH, Ambros V . The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999; 216: 671–680.

    Article  CAS  Google Scholar 

  19. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15: 185–197.

    Article  CAS  Google Scholar 

  20. Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.

    Article  CAS  Google Scholar 

  21. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7: 759–764.

    Article  CAS  Google Scholar 

  22. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2009; 29: 1580–1587.

    Article  Google Scholar 

  23. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008; 105: 3903–3908.

    Article  CAS  Google Scholar 

  24. Kasinski AL, Slack FJ . miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res 2012; 72: 5576–5587.

    Article  CAS  Google Scholar 

  25. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010; 70: 5923–5930.

    Article  CAS  Google Scholar 

  26. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011; 19: 1116–1122.

    Article  CAS  Google Scholar 

  27. Singh M, Lima A, Molina R, Hamilton P, Clermont AC, Devasthali V et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol 2010; 28: 585–593.

    Article  CAS  Google Scholar 

  28. DuPage M, Dooley AL, Jacks T . Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nature Protoc 2009; 4: 1064–1072.

    Article  CAS  Google Scholar 

  29. Xue W, Meylan E, Oliver TG, Feldser DM, Winslow MM, Bronson R et al. Response and resistance to NF-κB inhibitors in mouse models of lung adenocarcinoma. Cancer Discov 2011; 1: 236–247.

    Article  CAS  Google Scholar 

  30. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906.

    Article  CAS  Google Scholar 

  31. Newman MA, Thomson JM, Hammond SM . Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008; 14: 1539–1549.

    Article  CAS  Google Scholar 

  32. Bader AG . miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 2012; 3: 120.

    Article  CAS  Google Scholar 

  33. Bouchie A . First microRNA mimic enters clinic. Nat Biotechnol 2013; 31: 577.

    Article  CAS  Google Scholar 

  34. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ALK was supported by an American Cancer Society Fellowship (PF-11-244-01) and an NIH Pathway to Independence Award (CA178091). This work was supported by a grant to FJS from the NIH (CA131301) and by a commercialization grant from the Cancer Prevention Research Institute of Texas (CPRIT) to AGB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A G Bader or F J Slack.

Ethics declarations

Competing interests

KK, JZ and AGB are employees of Mirna Therapeutics, which develops miRNA-based therapies. SD is a former employee of Mirna Therapeutics. FJS is a consultant for Mirna Therapeutics. KK, JZ, AGB and FJS are shareholders of Mirna Therapeutics. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasinski, A., Kelnar, K., Stahlhut, C. et al. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 34, 3547–3555 (2015). https://doi.org/10.1038/onc.2014.282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.282

This article is cited by

Search

Quick links