Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel role for Plk4 in regulating cell spreading and motility

Abstract

Polo family kinase 4 (Plk4) is required for mitotic progression, and is haploinsufficient for tumor suppression and timely hepatocyte polarization in regenerating liver. At the same time, recent evidence suggests that Plk4 expression may have a role in clinical cancer progression, although the mechanisms are not clear. Here we identify a gene expression pattern predictive of reduced motility in Plk4+/− murine embryonic fibroblasts (MEFs) and validate this prediction with functional assays of cell spreading, migration and invasion. Increased Plk4 expression enhances cell spreading in Plk4+/− MEFs and migration in human embryonic kidney 293T cells, and increases invasion by DLD-1 colon cancer cells. Plk4 depletion impairs invasion of wild-type MEFs and suppresses invasion by MDA-MB231 breast cancer cells. Cytoskeletal reorganization and development of polarity are impaired in Plk4-deficient cells that have been stimulated to migrate. Endogenous Plk4 phosphorylated at the autophosphorylation site S305 localizes to the protrusions of motile cells, coincident with the RhoA GEF Ect2, GTP-bound RhoA and the RhoA effector mDia. Taken together, our findings reveal an unexpected activity of Plk4 that promotes cell migration and may underlie an association between increased Plk4 expression, cancer progression and death from metastasis in solid tumor patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Leung GC, Hudson JW, Kozarova A, Davidson A, Dennis JW, Sicheri F . The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat Struct Biol 2002; 9: 719–724.

    Article  CAS  Google Scholar 

  2. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA . The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 2005; 7: 1140–1146.

    Article  CAS  Google Scholar 

  3. Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC . The structure of the Plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 2012; 20: 1905–1917.

    Article  CAS  Google Scholar 

  4. Cunha-Ferreira I, Rodrigues-Martins A, Bento I, Riparbelli M, Zhang W, Laue E et al. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr Biol 2009; 19: 43–49.

    Article  CAS  Google Scholar 

  5. Guderian G, Westendorf J, Uldschmid A, Nigg EA . Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J Cell Sci 2010; 123 (Part 13): 2163–2169.

    Article  CAS  Google Scholar 

  6. Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW . Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 2010; 188: 191–198.

    Article  CAS  Google Scholar 

  7. Sillibourne JE, Tack F, Vloemans N, Boeckx A, Thambirajah S, Bonnet P et al. Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol Biol Cell 2010; 21: 547–561.

    Article  CAS  Google Scholar 

  8. Brownlee CW, Klebba JE, Buster DW, Rogers GC . The protein phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification. J Cell Biol 2011; 195: 231–243.

    Article  CAS  Google Scholar 

  9. Holland AJ, Fachinetti D, Zhu Q, Bauer M, Verma IM, Nigg EA et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev 2012; 26: 2684–2689.

    Article  CAS  Google Scholar 

  10. Klebba JE, Buster DW, Nguyen AL, Swatkoski S, Gucek M, Rusan NM et al. Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron. Curr Biol 2013; 23: 2255–2261.

    Article  CAS  Google Scholar 

  11. Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M, Duarte P et al. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr Biol 2013; 23: 2245–2254.

    Article  CAS  Google Scholar 

  12. Puklowski A, Homsi Y, Keller D, May M, Chauhan S, Kossatz U et al. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nat Cell Biol 2011; 13: 1004–1009.

    Article  CAS  Google Scholar 

  13. Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L, Haselmann-Weiss U et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J Cell Biol 2010; 191: 731–739.

    Article  CAS  Google Scholar 

  14. Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M et al. Asterless is a scaffold for the onset of centriole assembly. Nature 2010; 467: 714–718.

    Article  CAS  Google Scholar 

  15. Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T . Cep152 interacts with Plk4 and is required for centriole duplication. J Cell Biol 2010; 191: 721–729.

    Article  CAS  Google Scholar 

  16. Coelho PA, Bury L, Sharif B, Riparbelli MG, Fu J, Callaini G et al. Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev Cell 2013; 27: 586–597.

    Article  CAS  Google Scholar 

  17. Bahtz R, Seidler J, Arnold M, Haselmann-Weiss U, Antony C, Lehmann WD et al. GCP6 is a substrate of Plk4 and required for centriole duplication. J Cell Sci 2012; 125 (Pt 2): 486–496.

    Article  CAS  Google Scholar 

  18. Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, Glover DM . CENP-C is a structural platform for kinetochore assembly. Curr Biol 2011; 21: 399–405.

    Article  CAS  Google Scholar 

  19. Hudson JW, Kozarova A, Cheung P, Macmillan JC, Swallow CJ, Cross JC et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol 2001; 11: 441–446.

    Article  CAS  Google Scholar 

  20. Martindill DM, Risebro CA, Smart N, Franco-Viseras Mdel M, Rosario CO, Swallow CJ et al. Nucleolar release of Hand1 acts as a molecular switch to determine cell fate. Nat Cell Biol 2007; 9: 1131–1141.

    Article  CAS  Google Scholar 

  21. Ko MA, Rosario CO, Hudson JW, Kulkarni S, Pollett A, Dennis JW et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 2005; 37: 883–888.

    Article  CAS  Google Scholar 

  22. Rosario CO, Ko MA, Haffani YZ, Gladdy RA, Paderova J, Pollett A et al. Plk4 is required for cytokinesis and maintenance of chromosomal stability. Proc Natl Acad Sci USA 2010; 107: 6888–6893.

    Article  CAS  Google Scholar 

  23. Holland AJ, Fachinetti D, Da Cruz S, Zhu Q, Vitre B, Lince-Faria M et al. Polo-like kinase 4 controls centriole duplication but does not directly regulate cytokinesis. Mol Biol Cell 2012; 23: 1838–1845.

    Article  CAS  Google Scholar 

  24. Burkard ME, Randall CL, Larochelle S, Zhang C, Shokat KM, Fisher RP et al. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci USA 2007; 104: 4383–4388.

    Article  CAS  Google Scholar 

  25. Petronczki M, Glotzer M, Kraut N, Peters JM . Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 2007; 12: 713–725.

    Article  CAS  Google Scholar 

  26. Swallow CJ, Ko MA, Siddiqui NU, Hudson JW, Dennis JW . Sak/Plk4 and mitotic fidelity. Oncogene 2005; 24: 306–312.

    Article  CAS  Google Scholar 

  27. Lim Y, Lim ST, Tomar A, Gardel M, Bernard-Trifilo JA, Chen XL et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol 2008; 180: 187–203.

    Article  CAS  Google Scholar 

  28. Goulimari P, Kitzing TM, Knieling H, Brandt DT, Offermanns S, Grosse R . Galpha12/13 is essential for directed cell migration and localized Rho-Dia1 function. J Biol Chem 2005; 280: 42242–42251.

    Article  CAS  Google Scholar 

  29. Ohn T, Anderson P . The role of posttranslational modifications in the assembly of stress granules. Wiley Interdiscip Rev RNA 2010; 1: 486–493.

    Article  CAS  Google Scholar 

  30. Leung GC, Ho CS, Blasutig IM, Murphy JM, Sicheri F . Determination of the Plk4/Sak consensus phosphorylation motif using peptide spots arrays. FEBS Lett 2007; 581: 77–83.

    Article  CAS  Google Scholar 

  31. Johnson EF, Stewart KD, Woods KW, Giranda VL, Luo Y . Pharmacological and functional comparison of the polo-like kinase family: insight into inhibitor and substrate specificity. Biochemistry 2007; 46: 9551–9563.

    Article  CAS  Google Scholar 

  32. Basu R, Chang F . Shaping the actin cytoskeleton using microtubule tips. Curr Opin Cell Biol. 2007; 19: 88–94.

    Article  CAS  Google Scholar 

  33. Small JV, Geiger B, Kaverina I, Bershadsky A . How do microtubules guide migrating cells? Nat Rev Mol Cell Biol 2002; 3: 957–964.

    Article  CAS  Google Scholar 

  34. Moss DK, Bellett G, Carter JM, Liovic M, Keynton J, Prescott AR et al. Ninein is released from the centrosome and moves bi-directionally along microtubules. J Cell Sci 2007; 120 (Part 17): 3064–3074.

    Article  CAS  Google Scholar 

  35. Park AY, Shen TL, Chien S, Guan JL . Role of focal adhesion kinase Ser-732 phosphorylation in centrosome function during mitosis. J Biol Chem 2009; 284: 9418–9425.

    Article  CAS  Google Scholar 

  36. Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers SL . The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J Cell Biol 2009; 184: 225–239.

    Article  CAS  Google Scholar 

  37. Rosario CO . The Effects of Polo-like Kinase 4 on Chromosomal Stability, Cell Migration and Tumourigenesis. University of Toronto: Toronto, ON, Canada, 2010.

    Google Scholar 

  38. Finetti P, Cervera N, Charafe-Jauffret E, Chabannon C, Charpin C, Chaffanet M et al. Sixteen-kinase gene expression identifies luminal breast cancers with poor prognosis. Cancer Res 2008; 68: 767–776.

    Article  CAS  Google Scholar 

  39. Agarwal R, Gonzalez-Angulo AM, Myhre S, Carey M, Lee JS, Overgaard J et al. Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res. 2009; 15: 3654–3662.

    Article  CAS  Google Scholar 

  40. Macmillan JC, Hudson JW, Bull S, Dennis JW, Swallow CJ . Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann Surg Oncol 2001; 8: 729–740.

    Article  CAS  Google Scholar 

  41. Glinsky GV, Berezovska O, Glinskii AB . Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115: 1503–1521.

    Article  CAS  Google Scholar 

  42. Glinsky GV . Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated polycomb group (PcG) protein chromatin silencing pathway. Cell Cycle 2006; 5: 1208–1216.

    Article  CAS  Google Scholar 

  43. Korzeniewski N, Treat B, Duensing S . The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer 2011; 10: 61.

    Article  CAS  Google Scholar 

  44. Fischer M, Quaas M, Wintsche A, Muller GA, Engeland K . Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein. Nucleic Acids Res 2013; 42: 163–180.

    Article  Google Scholar 

  45. Nakamura T, Saito H, Takekawa M . SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress. Nat Commun 2013; 4: 1775.

    Article  Google Scholar 

  46. Ganem NJ, Godinho SA, Pellman D . A mechanism linking extra centrosomes to chromosomal instability. Nature 2009; 460: 278–282.

    Article  CAS  Google Scholar 

  47. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D . Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437: 1043–1047.

    Article  CAS  Google Scholar 

  48. Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 2014; 510: 167–171.

    Article  CAS  Google Scholar 

  49. Laufer R, Forrest B, Li SW, Liu Y, Sampson P, Edwards L et al. The discovery of PLK4 inhibitors: (E)-3-((1H-Indazol-6-yl)methylene)indolin-2-ones as novel antiproliferative agents. J Med Chem 2013; 56: 6069–6087.

    Article  CAS  Google Scholar 

  50. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  51. Nguyen TN, Wang HJ, Zalzal S, Nanci A, Nabi IR . Purification and characterization of beta-actin-rich tumor cell pseudopodia: role of glycolysis. Exp Cell Res 2000; 258: 171–183.

    Article  CAS  Google Scholar 

  52. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CIHR (CJS) and NCIC (JWD), and from the Syd Cooper Program for the Prevention of Cancer Progression (CJS). We acknowledge Karina Pacholczyk, Peter E Wu and Kevin Yau for technical assistance, Judy Pawling for manuscript review, and Jayne Danska and Laurence Pelletier for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Swallow.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosario, C., Kazazian, K., Zih, F. et al. A novel role for Plk4 in regulating cell spreading and motility. Oncogene 34, 3441–3451 (2015). https://doi.org/10.1038/onc.2014.275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.275

This article is cited by

Search

Quick links