Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

K63-linked ubiquitination of FANCG is required for its association with the Rap80-BRCA1 complex to modulate homologous recombination repair of DNA interstand crosslinks

Abstract

DNA interstrand crosslinks (ICLs) are extremely deleterious lesions that are repaired by homologous recombination (HR) through coordination of Fanconi anemia (FA) proteins and breast cancer susceptibility gene 1 (BRCA1) product, but the exact role these proteins have remains unclear. Here we report that FANCG was modified by the addition of lysine63-linked polyubiquitin chains (K63Ub) in response to DNA damage. We show that FANCG K63Ub was dispensable for monoubiquitination of FANCD2, but was required for FANCG to interact with the Rap80-BRCA1 (receptor-associated protein 80-BRCA1) complex for subsequent modulation of HR repair of ICLs induced by mitomycin C. Mutation of three lysine residues within FANCG to arginine (K182, K258 and K347, 3KR) reduced FANCG K63Ub modification, as well as its interaction with the Rap80-BRCA1 complex, and therefore impeded HR repair. In addition, we demonstrated that K63Ub-modified FANCG was deubiquitinated by BRCC36 complex in vitro and in vivo. Inhibition of BRCC36 resulted in increased K63Ub modification of FANCG. Taken together, our results identify a new role of FANCG in HR repair of ICL through K63Ub-mediated interaction with the Rap80-BRCA1 complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Deans AJ, West SC . DNA interstrand crosslink repair and cancer. Nat Rev Cancer 2011; 11: 467–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang X, Peterson CA, Zheng H, Nairn RS, Legerski RJ, Li L . Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol Cell Biol 2001; 21: 713–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 2008; 134: 969–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 2009; 326: 1698–1701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Long DT, Raschle M, Joukov V, Walter JC . Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 2011; 333: 84–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Enoiu M, Jiricny J, Scharer OD . Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res 2012; 40: 8953–8964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7: 249–262.

    Article  CAS  PubMed  Google Scholar 

  8. Wang W . Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007; 8: 735–748.

    Article  CAS  PubMed  Google Scholar 

  9. Joenje H, Patel KJ . The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2001; 2: 446–457.

    Article  CAS  PubMed  Google Scholar 

  10. Tischkowitz MD, Hodgson SV . Fanconi anaemia. J Med Genet 2003; 40: 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moldovan GL, D’Andrea AD . How the fanconi anemia pathway guards the genome. Annu Rev Genet 2009; 43: 223–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER III, Hurov KE, Luo J et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007; 129: 289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 2007; 39: 165–167.

    Article  CAS  PubMed  Google Scholar 

  14. Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A . Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 2011; 43: 142–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 2011; 43: 138–141.

    Article  CAS  PubMed  Google Scholar 

  16. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 2010; 42: 406–409.

    Article  CAS  PubMed  Google Scholar 

  17. Nakanishi K, Cavallo F, Perrouault L, Giovannangeli C, Moynahan ME, Barchi M et al. Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol 18: 500–503.

    Article  CAS  Google Scholar 

  18. Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D’Andrea AD et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 2005; 102: 1110–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ . The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell 2004; 15: 607–620.

    Article  CAS  PubMed  Google Scholar 

  20. Thompson LH, Hinz JM . Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668: 54–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang N, Liu X, Li L, Legerski R . Double-strand breaks induce homologous recombinational repair of interstrand cross-links via cooperation of MSH2, ERCC1-XPF, REV3, and the Fanconi anemia pathway. DNA Repair (Amst) 2007; 6: 1670–1678.

    Article  CAS  Google Scholar 

  22. Deans AJ, West SC . FANCM connects the genome instability disorders Bloom’s syndrome and fanconi anemia. Mol Cell 2009; 36: 943–953.

    Article  CAS  PubMed  Google Scholar 

  23. Rothfuss A, Grompe M . Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol Cell Biol 2004; 24: 123–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akkari YM, Bateman RL, Reifsteck CA, Olson SB, Grompe M . DNA replication is required to elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol Cell Biol 2000; 20: 8283–8289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dronkert ML, Kanaar R . Repair of DNA interstrand cross-links. Mutat Res 2001; 486: 217–247.

    Article  CAS  PubMed  Google Scholar 

  26. Karran P . DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 2000; 10: 144–150.

    Article  CAS  PubMed  Google Scholar 

  27. Yang YG, Herceg Z, Nakanishi K, Demuth I, Piccoli C, Michelon J et al. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells. Carcinogenesis 2005; 26: 1731–1740.

    Article  CAS  PubMed  Google Scholar 

  28. Folias A, Matkovic M, Bruun D, Reid S, Hejna J, Grompe M et al. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum Mol Genet 2002; 11: 2591–2597.

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto K, Ishiai M, Matsushita N, Arakawa H, Lamerdin JE, Buerstedde JM et al. Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol Cell Biol 2003; 23: 5421–5430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilson JB, Yamamoto K, Marriott AS, Hussain S, Sung P, Hoatlin ME et al. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene 2008; 27: 3641–3652.

    Article  CAS  PubMed  Google Scholar 

  31. Narod SA, Foulkes WD . BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 2004; 4: 665–676.

    Article  CAS  PubMed  Google Scholar 

  32. Venkitaraman AR . Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002; 108: 171–182.

    Article  CAS  PubMed  Google Scholar 

  33. Roy R, Chun J, Powell SN . BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 2012; 12: 68–78.

    Article  CAS  Google Scholar 

  34. Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, Livingston DM . Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 2006; 20: 34–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 2007; 316: 1194–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu X, Chen J . DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol 2004; 24: 9478–9486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao G, Patterson-Fortin J, Messick TE, Feng D, Shanbhag N, Wang Y et al. MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev 2009; 23: 740–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 2007; 316: 1198–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng L, Huang J, Chen J . MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev 2009; 23: 719–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim H, Huang J, Chen J . CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol 2007; 14: 710–715.

    Article  CAS  PubMed  Google Scholar 

  41. Kim H, Chen J, Yu X . Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 2007; 316: 1202–1205.

    Article  CAS  PubMed  Google Scholar 

  42. Wang B, Hurov K, Hofmann K, Elledge SJ . NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 2009; 23: 729–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Coleman KA, Greenberg RA . The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem 2011; 286: 13669–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM . RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 2011; 25: 685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shao G, Lilli DR, Patterson-Fortin J, Coleman KA, Morrissey DE, Greenberg RA . The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci USA 2009; 106: 3166–3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng L, Wang J, Chen J . The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments. J Biol Chem 2010; 285: 30982–30988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE . K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 2009; 28: 621–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dikic I, Wakatsuki S, Walters KJ . Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 2009; 10: 659–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S . Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J 2009; 28: 2461–2468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sims JJ, Cohen RE . Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Molecular cell 2009; 33: 775–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang TT, D’Andrea AD . Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 2006; 7: 323–334.

    Article  CAS  PubMed  Google Scholar 

  52. Weake VM, Workman JL . Histone ubiquitination: triggering gene activity. Mol Cell 2008; 29: 653–663.

    Article  CAS  PubMed  Google Scholar 

  53. Clague MJ, Urbe S . Endocytosis: the DUB version. Trends Cell Biol 2006; 16: 551–559.

    Article  CAS  PubMed  Google Scholar 

  54. Liu Z, Wu J, Yu X . CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol 2007; 14: 716–720.

    Article  CAS  PubMed  Google Scholar 

  55. Cooper EM, Boeke JD, Cohen RE . Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. J Biol Chem 2010; 285: 10344–10352.

    Article  CAS  PubMed  Google Scholar 

  56. D’Andrea AD, Grompe M . The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 2003; 3: 23–34.

    Article  PubMed  Google Scholar 

  57. Wang B, Elledge SJ . Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci USA 2007; 104: 20759–20763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan Z, Guo R, Paramasivam M, Shen W, Ling C, Fox D III, et al. A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. Mol Cell 2012; 47: 61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng L, Chen J . The E3 ligase RNF8 regulates KU80 removal and NHEJ repair. Nat Struct Mol Biol 2012; 19: 201–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010; 141: 243–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ward IM, Reina-San-Martin B, Olaru A, Minn K, Tamada K, Lau JS et al. 53BP1 is required for class switch recombination. J Cell Biol 2004; 165: 459–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007; 131: 901–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 2007; 318: 1637–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 2007; 131: 887–900.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao GY, Sonoda E, Barber LJ, Oka H, Murakawa Y, Yamada K et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell 2007; 25: 663–675.

    Article  CAS  PubMed  Google Scholar 

  66. Hussain S, Witt E, Huber PA, Medhurst AL, Ashworth A, Mathew CG . Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet 2003; 12: 2503–2510.

    Article  CAS  PubMed  Google Scholar 

  67. Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 2001; 7: 273–282.

    Article  CAS  PubMed  Google Scholar 

  68. Moynahan ME, Pierce AJ, Jasin M . BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 2001; 7: 263–272.

    Article  CAS  PubMed  Google Scholar 

  69. Hofmann K . Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair (Amst) 2009; 8: 544–556.

    Article  CAS  Google Scholar 

  70. Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 2010; 142: 77–88.

    Article  CAS  PubMed  Google Scholar 

  71. MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 2010; 142: 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell 2010; 39: 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Grant 7122099); Natural Science Foundation of China (Grant 81272915); the Research Fund for the Doctoral Program of Higher Education (20110001110013); the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (JWSL44-8); 985 Program, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Yang or G Shao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Yan, K., Li, L. et al. K63-linked ubiquitination of FANCG is required for its association with the Rap80-BRCA1 complex to modulate homologous recombination repair of DNA interstand crosslinks. Oncogene 34, 2867–2878 (2015). https://doi.org/10.1038/onc.2014.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.229

This article is cited by

Search

Quick links