Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo

Subjects

Abstract

Osteosarcoma (OS) is the most common cancer of bone. Parathyroid hormone (PTH) regulates calcium homeostasis and bone development, while the paracrine/autocrine PTH-related protein (PTHrP) has central roles in endochondral bone formation and bone remodeling. Using a murine OS model, we found that OS cells express PTHrP and the common PTH/PTHrP receptor (PTHR1). To investigate the role of PTHR1 signaling in OS cell behavior, we used shRNA to reduce PTHR1 expression. This only mildly inhibited proliferation in vitro, but markedly reduced invasion through collagen and reduced expression of RANK ligand (RANKL). Administration of PTH(1–34) did not stimulate OS proliferation in vivo but, strikingly, PTHR1 knockdown resulted in a profound growth inhibition and increased differentiation/mineralization of the tumors. Treatment with neutralizing antibody to PTHrP did not recapitulate the knockdown of PTHR1. Consistent with this lack of activity, PTHrP was predominantly intracellular in OS cells. Knockdown of PTHR1 resulted in increased expression of late osteoblast differentiation genes and upregulation of Wnt antagonists. RANKL production was reduced in knockdown tumors, providing for reduced homotypic signaling through the receptor, RANK. Loss of PTHR1 resulted in the coordinated loss of gene signatures associated with the polycomb repressive complex 2 (PRC2). Using Ezh2 inhibitors, we demonstrate that the increased expression of osteoblast maturation markers is in part mediated by the loss of PRC2 activity. Collectively these results demonstrate that PTHR1 signaling is important in maintaining OS proliferation and undifferentiated state. This is in part mediated by intracellular PTHrP and through regulation of the OS epigenome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A et al. A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012; 2012: 704872.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Janeway KA, Grier HE . Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol 2010; 11: 670–678.

    Article  PubMed  Google Scholar 

  3. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. New Engl J Med 2001; 344: 1434–1441.

    Article  CAS  PubMed  Google Scholar 

  4. McCauley LK, Martin TJ . Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 2012; 27: 1231–1239.

    Article  CAS  PubMed  Google Scholar 

  5. Gardella TJ, Juppner H . Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 2001; 12: 210–217.

    Article  CAS  PubMed  Google Scholar 

  6. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC . Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 1999; 104: 439–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller H, Kneissel M . SOST is a target gene for PTH in bone. Bone 2005; 37: 148–158.

    Article  CAS  PubMed  Google Scholar 

  8. Andrews EB, Gilsenan AW, Midkiff K, Sherrill B, Wu Y, Mann BH et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res 2012; 27: 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  9. Tashjian AH Jr, Goltzman D . On the interpretation of rat carcinogenicity studies for human PTH(1-34) and human PTH(1-84). J Bone Miner Res 2008; 23: 803–811.

    Article  CAS  PubMed  Google Scholar 

  10. Yang R, Hoang BH, Kubo T, Kawano H, Chou A, Sowers R et al. Over-expression of parathyroid hormone Type 1 receptor confers an aggressive phenotype in osteosarcoma. Int J Cancer 2007; 121: 943–954.

    Article  CAS  PubMed  Google Scholar 

  11. Martin TJ, Ingleton PM, Underwood JC, Michelangeli VP, Hunt NH, Melick RA . Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma. Nature 1976; 260: 436–438.

    Article  CAS  PubMed  Google Scholar 

  12. Majeska RJ, Rodan SB, Rodan GA . Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology 1980; 107: 1494–1503.

    Article  CAS  PubMed  Google Scholar 

  13. Ingleton PM, Underwood JC, Hunt NH, Atkins D, Giles B, Coulton LA et al. Radiation induced osteogenic sarcoma in the rat as a model of hormone-responsive differentiated cancer. Lab Anim Sci 1977; 27 (5 Pt 2): 748–756.

    CAS  PubMed  Google Scholar 

  14. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 2008; 22: 1662–1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mutsaers AJ, Ng AJ, Baker EK, Russell MR, Chalk AM, Wall M et al. Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA. Bone 2013; 55: 166–178.

    Article  CAS  PubMed  Google Scholar 

  16. Kuijjer ML, Peterse EF, van den Akker BE, Briaire-de Bruijn IH, Serra M, Meza-Zepeda LA et al. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma. BMC Cancer 2013; 13: 245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuijjer ML, Namlos HM, Hauben EI, Machado I, Kresse SH, Serra M et al. mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts. BMC Med Genomics 2011; 4: 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allan EH, Ho PW, Umezawa A, Hata J, Makishima F, Gillespie MT et al. Differentiation potential of a mouse bone marrow stromal cell line. J Cell Biochem 2003; 90: 158–169.

    Article  CAS  PubMed  Google Scholar 

  19. Takiguchi M, Dow LE, Prier JE, Carmichael CL, Kile BT, Turner SJ et al. Variability of inducible expression across the hematopoietic system of tetracycline transactivator transgenic mice. PLoS One 2013; 8: e54009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 2011; 145: 145–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molyneux SD, Di Grappa MA, Beristain AG, McKee TD, Wai DH, Paderova J et al. Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice. J Clin Invest 2010; 120: 3310–3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson DL, Sabbagh Y, Tenenhouse HS, Roche PC, Drezner MK, Salisbury JL et al. Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res 2002; 17: 311–320.

    Article  CAS  PubMed  Google Scholar 

  23. Allan EH, Hausler KD, Wei T, Gooi JH, Quinn JM, Crimeen-Irwin B et al. EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res 2008; 23: 1170–1181.

    Article  CAS  PubMed  Google Scholar 

  24. Miao D, He B, Karaplis AC, Goltzman D . Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 2002; 109: 1173–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin TJ . Osteoblast-derived PTHrP is a physiological regulator of bone formation. J Clin Invest 2005; 115: 2322–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lam MH, Olsen SL, Rankin WA, Ho PW, Martin TJ, Gillespie MT et al. PTHrP and cell division: expression and localization of PTHrP in a keratinocyte cell line (HaCaT) during the cell cycle. J Cell Physiol 1997; 173: 433–446.

    Article  CAS  PubMed  Google Scholar 

  27. Danks JA, Ebeling PR, Hayman J, Chou ST, Moseley JM, Dunlop J et al. Parathyroid hormone-related protein: immunohistochemical localization in cancers and in normal skin. J Bone Miner Res 1989; 4: 273–278.

    Article  CAS  PubMed  Google Scholar 

  28. Onuma E, Sato K, Saito H, Tsunenari T, Ishii K, Esaki K et al. Generation of a humanized monoclonal antibody against human parathyroid hormone-related protein and its efficacy against humoral hypercalcemia of malignancy. Anticancer Res 2004; 24: 2665–2673.

    CAS  PubMed  Google Scholar 

  29. Mundy GR . Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2: 584–593.

    Article  CAS  PubMed  Google Scholar 

  30. Lamoureux F, Richard P, Wittrant Y, Battaglia S, Pilet P, Trichet V et al. Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Res 2007; 67: 7308–7318.

    Article  CAS  PubMed  Google Scholar 

  31. Akiyama T, Choong PF, Dass CR . RANK-Fc inhibits malignancy via inhibiting ERK activation and evoking caspase-3-mediated anoikis in human osteosarcoma cells. Clin Exp Metastasis 2010; 27: 207–215.

    Article  CAS  PubMed  Google Scholar 

  32. Gorlick R, Janeway K, Lessnick S, Randall RL, Marina N . Children's Oncology Group's 2013 blueprint for research: bone tumors. Pediatr Blood Cancer 2013; 60: 1009–1015.

    Article  PubMed  Google Scholar 

  33. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006; 440: 692–696.

    Article  CAS  PubMed  Google Scholar 

  34. Beristain AG, Narala SR, Di Grappa MA, Khokha R . Homotypic RANK signaling differentially regulates proliferation, motility and cell survival in osteosarcoma and mammary epithelial cells. J Cell Sci 2012; 125 (Pt 4): 943–955.

    Article  CAS  PubMed  Google Scholar 

  35. Vargas MA, St-Louis M, Desgroseillers L, Charli JL, Boileau G . Parathyroid hormone-related protein(1-34) regulates Phex expression in osteoblasts through the protein kinase A pathway. Endocrinology 2003; 144: 4876–4885.

    Article  CAS  PubMed  Google Scholar 

  36. Gopalakrishnan R, Suttamanatwong S, Carlson AE, Franceschi RT . Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs 2005; 181: 166–175.

    Article  CAS  PubMed  Google Scholar 

  37. Henderson JE, Amizuka N, Warshawsky H, Biasotto D, Lanske BM, Goltzman D et al. Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Mol Cell Biol 1995; 15: 4064–4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Massfelder T, Dann P, Wu TL, Vasavada R, Helwig JJ, Stewart AF . Opposing mitogenic and anti-mitogenic actions of parathyroid hormone-related protein in vascular smooth muscle cells: a critical role for nuclear targeting. Proc Natl Acad Sci USA 1997; 94: 13630–13635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang B, Morimoto S, Fukuo K, Yasuda O, Chen S, Ogihara T . Role of parathyroid hormone-related protein in the proliferation of vascular smooth muscle cells. Miner Electrolyte Metab 1995; 21: 157–160.

    CAS  PubMed  Google Scholar 

  40. Maeda S, Wu S, Juppner H, Green J, Aragay AM, Fagin JA et al. Cell-specific signal transduction of parathyroid hormone (PTH)-related protein through stably expressed recombinant PTH/PTHrP receptors in vascular smooth muscle cells. Endocrinology 1996; 137: 3154–3162.

    Article  CAS  PubMed  Google Scholar 

  41. Pirola CJ, Wang HM, Kamyar A, Wu S, Enomoto H, Sharifi B et al. Angiotensin II regulates parathyroid hormone-related protein expression in cultured rat aortic smooth muscle cells through transcriptional and post-transcriptional mechanisms. J Biol Chem 1993; 268: 1987–1994.

    CAS  PubMed  Google Scholar 

  42. Okano K, Wu S, Huang X, Pirola CJ, Juppner H, Abou-Samra AB et al. Parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor and its messenger ribonucleic acid in rat aortic vascular smooth muscle cells and UMR osteoblast-like cells: cell-specific regulation by angiotensin-II and PTHrP. Endocrinology 1994; 135: 1093–1099.

    Article  CAS  PubMed  Google Scholar 

  43. Jans DA, Briggs LJ, Gustin SE, Jans P, Ford S, Young IG . The cytokine interleukin-5 (IL-5) effects cotransport of its receptor subunits to the nucleus in vitro. FEBS Lett 1997; 410: 368–372.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Berendsen AD, Jia S, Lotinun S, Baron R, Ferrara N et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest 2012; 122: 3101–3113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Watson PH, Fraher LJ, Hendy GN, Chung UI, Kisiel M, Natale BV et al. Nuclear localization of the type 1 PTH/PTHrP receptor in rat tissues. J Bone Miner Res 2000; 15: 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  46. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 2005; 37: 1289–1295.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the SVH BioResources Centre; P Kocovski and S Taylor for technical assistance, L Purton and J Heierhorst for comments and discussion. This work was supported by grants from the National Health and Medical Research Council of Australia (NHMRC; to CRW and CRW/TJM); Cancer Council of Victoria (to CRW and EKB); NHMRC Career Development Award (CRW); Cure Cancer Australia Foundation Fellowship (EKB); in part by the Victorian State Government Operational Infrastructure Support Program (to St. Vincent’s Institute). CRW is the Philip Desbrow Senior Research Fellow of the Leukaemia Foundation. The authors thank Chugai Pharmaceutical Company for providing the α-PTHrP neutralizing antibody; The Structural Genomics Consortium for generously providing GSK343 and UNC1999.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T J Martin or C R Walkley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, P., Goradia, A., Russell, M. et al. Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo. Oncogene 34, 2922–2933 (2015). https://doi.org/10.1038/onc.2014.217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.217

This article is cited by

Search

Quick links