Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RECK controls breast cancer metastasis by modulating a convergent, STAT3-dependent neoangiogenic switch

Abstract

Metastasis is the primary cause of cancer-related death in oncology patients. A comprehensive understanding of the molecular mechanisms that cancer cells usurp to promote metastatic dissemination is critical for the development and implementation of novel diagnostic and treatment strategies. Here we show that the membrane protein RECK (Reversion-inducing cysteine-rich protein with kazal motifs) controls breast cancer metastasis by modulating a novel, non-canonical and convergent signal transducer and activator of transcription factor 3 (STAT3)-dependent angiogenic program. Neoangiogenesis and STAT3 hyperactivation are known to be fundamentally important for metastasis, but the root molecular initiators of these phenotypes are poorly understood. Our study identifies loss of RECK as a critical and previously unknown trigger for these hallmarks of metastasis. Using multiple xenograft mouse models, we comprehensively show that RECK inhibits metastasis, concomitant with a suppression of neoangiogenesis at secondary sites, while leaving primary tumor growth unaffected. Further, with functional genomics and biochemical dissection we demonstrate that RECK controls this angiogenic rheostat through a novel complex with cell surface receptors to regulate STAT3 activation, cytokine signaling, and the induction of both vascular endothelial growth factor and urokinase plasminogen activator. In accordance with these findings, inhibition of STAT3 can rescue this phenotype both in vitro and in vivo. Taken together, our study uncovers, for the first time, that RECK is a novel regulator of multiple well-established and robust mediators of metastasis; thus, RECK is a keystone protein that may be exploited in a clinical setting to target metastatic disease from multiple angles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN . Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 2007; 608: 1–22.

    Article  CAS  Google Scholar 

  2. Cardoso F, Harbeck N, Fallowfield L, Kyriakides S, Senkus E, Group EGW . Locally recurrent or metastatic breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23 (Suppl 7): vii11–vii19.

    Google Scholar 

  3. Shoushtari AN, Szmulewitz RZ, Rinker-Schaeffer CW . Metastasis-suppressor genes in clinical practice: lost in translation? Nat Rev Clin Oncol 2011; 8: 333–342.

    Article  CAS  Google Scholar 

  4. Noda M, Takahashi C, Matsuzaki T, Kitayama H . What we learn from transformation suppressor genes: lessons from RECK. Future Oncol 2010; 6: 1105–1116.

    Article  CAS  Google Scholar 

  5. Rabien A, Ergun B, Erbersdobler A, Jung K, Stephan C . RECK overexpression decreases invasive potential in prostate cancer cells. Prostate 2012; 72: 948–954.

    Article  CAS  Google Scholar 

  6. Chang CK, Hung WC, Chang HC . The Kazal motifs of RECK protein inhibit MMP-9 secretion and activity and reduce metastasis of lung cancer cells in vitro and in vivo. J Cell Mol Med 2008; 12 (6B): 2781–2789.

    Article  CAS  Google Scholar 

  7. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001; 107: 789–800.

    Article  CAS  Google Scholar 

  8. Zhang C, Ling Y, Zhang C, Xu Y, Gao L, Li R et al. The silencing of RECK gene is associated with promoter hypermethylation and poor survival in hepatocellular carcinoma. Int J Biol Sci 2012; 8: 451–458.

    Article  CAS  Google Scholar 

  9. Chang HC, Cho CY, Hung WC . Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res 2006; 66: 8413–8420.

    Article  CAS  Google Scholar 

  10. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C et al. Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res 2011; 71: 2988–2999.

    Article  CAS  Google Scholar 

  11. Ishikawa S, Takenaka K, Yanagihara K, Miyahara R, Kawano Y, Otake Y et al. Matrix metalloproteinase-2 status in stromal fibroblasts, not in tumor cells, is a significant prognostic factor in non-small-cell lung cancer. Clin Cancer Res 2004; 10: 6579–6585.

    Article  CAS  Google Scholar 

  12. Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A . Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep 2009; 21: 1323–1333.

    CAS  PubMed  Google Scholar 

  13. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    Article  CAS  Google Scholar 

  14. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  Google Scholar 

  15. Zhang B, Zhang J, Xu ZY, Xie HL . Expression of RECK and matrix metalloproteinase-2 in ameloblastoma. BMC Cancer 2009; 9: 427.

    Article  Google Scholar 

  16. Cardeal LB, Boccardo E, Termini L, Rabachini T, Andreoli MA, di Loreto C et al. HPV16 oncoproteins induce MMPs/RECK-TIMP-2 imbalance in primary keratinocytes: possible implications in cervical carcinogenesis. PLoS One 2012; 7: e33585.

    Article  CAS  Google Scholar 

  17. Dong Q, Yu D, Yang CM, Jiang B, Zhang H . Expression of the reversion-inducing cysteine-rich protein with Kazal motifs and matrix metalloproteinase-14 in neuroblastoma and the role in tumour metastasis. Int J Exp Pathol 2010; 91: 368–373.

    Article  CAS  Google Scholar 

  18. Zarogoulidis P, Yarmus L, Darwiche K, Walter R, Huang H, Li Z et al. Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunome Res 2013; 9: 16535.

    Article  Google Scholar 

  19. Rosenkilde MM, Schwartz TW . The chemokine system — a major regulator of angiogenesis in health and disease. APMIS 2004; 112: 481–495.

    Article  CAS  Google Scholar 

  20. Zeng L, O'Connor C, Zhang J, Kaplan AM, Cohen DA . IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine 2010; 49: 294–302.

    Article  CAS  Google Scholar 

  21. Tang L, Han X . The urokinase plasminogen activator system in breast cancer invasion and metastasis. Biomed Pharmacother 2013; 67: 179–182.

    Article  CAS  Google Scholar 

  22. Chaffer CL, Weinberg RA . A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.

    Article  CAS  Google Scholar 

  23. Berishaj M, Gao SP, Ahmed S, Leslie K, Al-Ahmadie H, Gerald WL et al. Stat3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer. Breast Cancer Res 2007; 9: R32.

    Article  Google Scholar 

  24. Bournazou E, Bromberg J . Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT 2013; 2: e23828.

    PubMed  PubMed Central  Google Scholar 

  25. Huang C, Xie K . Crosstalk of Sp1 and Stat3 signaling in pancreatic cancer pathogenesis. Cytokine Growth Factor Rev 2012; 23 (1-2): 25–35.

    Article  CAS  Google Scholar 

  26. Kim JH, Lee SC, Ro J, Kang HS, Kim HS, Yoon S . Jnk signaling pathway-mediated regulation of Stat3 activation is linked to the development of doxorubicin resistance in cancer cell lines. Biochem Pharmacol 2010; 79: 373–380.

    Article  CAS  Google Scholar 

  27. Benasciutti E, Pages G, Kenzior O, Folk W, Blasi F, Crippa MP . MAPK and JNK transduction pathways can phosphorylate Sp1 to activate the uPA minimal promoter element and endogenous gene transcription. Blood 2004; 104: 256–262.

    Article  CAS  Google Scholar 

  28. Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J 2005; 19: 1296–1298.

    Article  CAS  Google Scholar 

  29. Kang SH, Yu MO, Park KJ, Chi SG, Park DH, Chung YG . Activated STAT3 regulates hypoxia-induced angiogenesis and cell migration in human glioblastoma. Neurosurgery 2010; 67: 1386–1395, discussion 95.

    Article  Google Scholar 

  30. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    Article  CAS  Google Scholar 

  31. Zucker S, Cao J, Chen WT . Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 2000; 19: 6642–6650.

    Article  CAS  Google Scholar 

  32. Prendergast A, Linbo TH, Swarts T, Ungos JM, McGraw HF, Krispin S et al. The metalloproteinase inhibitor Reck is essential for zebrafish DRG development. Development 2012; 139: 1141–1152.

    Article  CAS  Google Scholar 

  33. Chandana EP, Maeda Y, Ueda A, Kiyonari H, Oshima N, Yamamoto M et al. Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice. BMC Dev Biol 2010; 10: 84.

    Article  Google Scholar 

  34. Prabhu VV, Siddikuzzaman, Grace VM, Guruvayoorappan C . Targeting tumor metastasis by regulating Nm23 gene expression. Asian Pac J Cancer Prev 2012; 13: 3539–3548.

    Article  Google Scholar 

  35. Jeon HW, Lee YM . Inhibition of histone deacetylase attenuates hypoxia-induced migration and invasion of cancer cells via the restoration of RECK expression. Mol Cancer Ther 2010; 9: 1361–1370.

    Article  CAS  Google Scholar 

  36. Cho CY, Wang JH, Chang HC, Chang CK, Hung WC . Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. J Cell Physiol 2007; 213: 65–69.

    Article  CAS  Google Scholar 

  37. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA . Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56: 549–580.

    Article  CAS  Google Scholar 

  38. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  39. Byrne AM, Bouchier-Hayes DJ, Harmey JH . Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 2005; 9: 777–794.

    Article  CAS  Google Scholar 

  40. Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM et al. Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. Cancer Detect Prev 2002; 26: 435–443.

    Article  CAS  Google Scholar 

  41. Carbajo-Pescador S, Ordonez R, Benet M, Jover R, Garcia-Palomo A, Mauriz JL et al. Inhibition of VEGF expression through blockade of Hif1alpha and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 2013; 109: 83–91.

    Article  CAS  Google Scholar 

  42. Bid HK, Oswald D, Li C, London CA, Lin J, Houghton PJ . Anti-angiogenic activity of a small molecule STAT3 inhibitor LLL12. PLoS One 2012; 7: e35513.

    Article  CAS  Google Scholar 

  43. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 2005; 24: 5552–5560.

    Article  CAS  Google Scholar 

  44. Avraamides CJ, Garmy-Susini B, Varner JA . Integrins in angiogenesis and lymphangiogenesis. Nature Rev Cancer 2008; 8: 604–617.

    Article  CAS  Google Scholar 

  45. Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA et al. Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 2009; 69: 1009–1015.

    Article  CAS  Google Scholar 

  46. D'Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C et al. VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS One 2013; 8: e67029.

    Article  CAS  Google Scholar 

  47. Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005; 23: 8932–8941.

    Article  CAS  Google Scholar 

  48. Waugh DJ, Wilson C . The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14: 6735–6741.

    Article  CAS  Google Scholar 

  49. Selander KS, Li L, Watson L, Merrell M, Dahmen H, Heinrich PC et al. Inhibition of gp130 signaling in breast cancer blocks constitutive activation of Stat3 and inhibits in vivo malignancy. Cancer Res 2004; 64: 6924–6933.

    Article  CAS  Google Scholar 

  50. Sriuranpong V, Park JI, Amornphimoltham P, Patel V, Nelkin BD, Gutkind JS . Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res 2003; 63: 2948–2956.

    CAS  PubMed  Google Scholar 

  51. Lee MM, Chui RK, Tam IY, Lau AH, Wong YH . CCR1-mediated STAT3 tyrosine phosphorylation and CXCL8 expression in THP-1 macrophage-like cells involve pertussis toxin-insensitive Galpha(14/16) signaling and IL-6 release. J Immunol 2012; 189: 5266–5276.

    Article  CAS  Google Scholar 

  52. Chung J, Uchida E, Grammer TC, Blenis J . STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 1997; 17: 6508–6516.

    Article  CAS  Google Scholar 

  53. Onishi A, Chen Q, Humtsoe JO, Kramer RH . STAT3 signaling is induced by intercellular adhesion in squamous cell carcinoma cells. Exp Cell Res 2008; 314: 377–386.

    Article  CAS  Google Scholar 

  54. Gu FM, Li QL, Gao Q, Jiang JH, Huang XY, Pan JF et al. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J Gastroenterol 2011; 17: 3922–3932.

    Article  CAS  Google Scholar 

  55. Huang G, Yan H, Ye S, Tong C, Ying QL . STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ES cell fates. Stem Cells 2013; 32: 1149–1160.

    Article  Google Scholar 

  56. Lin HY, Chiang CH, Hung WC . STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells. Br J Cancer 2013; 109: 731–738.

    Article  CAS  Google Scholar 

  57. Han L, Yue X, Zhou X, Lan FM, You G, Zhang W et al. MicroRNA-21 expression is regulated by beta-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther 2012; 18: 573–583.

    Article  CAS  Google Scholar 

  58. Thummarati P, Wijitburaphat S, Prasopthum A, Menakongka A, Sripa B, Tohtong R et al. High level of urokinase plasminogen activator contributes to cholangiocarcinoma invasion and metastasis. World J Gastroenterol 2012; 18: 244–250.

    Article  CAS  Google Scholar 

  59. Duffy MJ . The urokinase plasminogen activator system: role in malignancy. Curr Pharmaceut Des 2004; 10: 39–49.

    Article  CAS  Google Scholar 

  60. Zhao Y, Lyons CE Jr., Xiao A, Templeton DJ, Sang QA, Brew K et al. Urokinase directly activates matrix metalloproteinases-9: a potential role in glioblastoma invasion. Biochem Biophys Res Commun 2008; 369: 1215–1220.

    Article  CAS  Google Scholar 

  61. Choong PF, Nadesapillai AP . Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res 2003; 415 (Suppl): S46–S58.

    Article  Google Scholar 

  62. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    Article  CAS  Google Scholar 

  63. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005; 7: R953–R964.

    Article  CAS  Google Scholar 

  64. Cancer Genome Atlas Network, Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Agnes Viale and Russell Towers for technical assistance. We are indebted to Joan Massague (Memorial Sloan-Kettering Cancer Center) for generously providing cell lines and some constructs. We are grateful to the entire Tumour Procurement Service at MSKCC for facilitating tissue procurement and contributing valuable input. This work was supported by grants from the Department of Defense (DOD) (grant no. BC120568), the Frederick Adler Fund, the Avon Foundation, the Elsa Pardee foundation, the MSKCC Metastasis Center and the STARR Cancer Consortium (all to TAC). LAW was supported by The Canadian Institutes of Health Research PDF Award MFE-127325. DMR was supported by the HHMI Research Fellows Program and NIH MSTP grant T32GM007739. AS was supported by the Ruth L. Kirschstein National Research Award (NRSA) number T32CA009512 from the National Cancer Institute. ST was supported by an NIH T32 grant (5T32CA160001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T A Chan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, L., Roy, D., Reyngold, M. et al. RECK controls breast cancer metastasis by modulating a convergent, STAT3-dependent neoangiogenic switch. Oncogene 34, 2189–2203 (2015). https://doi.org/10.1038/onc.2014.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.175

This article is cited by

Search

Quick links