Abstract
One of the biggest roadblocks to using stem cells as the basis for regenerative medicine therapies is the tumorigenicity of stem cells. Unfortunately, the unique abilities of stem cells to self-renew and differentiate into a variety of cell types are also mechanistically linked to their tumorigenic behaviors. Understanding the mechanisms underlying the close relationship between stem cells and cancer cells has therefore become a primary goal in the field. In addition, knowledge gained from investigating the striking parallels between mechanisms orchestrating normal embryogenesis and those that invoke tumorigenesis may well serve as the foundation for developing novel cancer treatments. Emerging discoveries have demonstrated that epigenetic regulatory machinery has important roles in normal stem cell functions, cancer developmentĀ and cancer stem cell (CSC) identity. These studies provide valuable insights into both the shared and distinct mechanisms by which pluripotency and oncogenicity are established and regulated. In this review, the cancer-related epigenetic mechanisms found in pluripotent stem cells and cancer cells will be discussed, focusing on both the similarities and the differences.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57ā70.
Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646ā674.
Stevens LC, Little CC . Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA 1954; 40: 1080ā1087.
Jacob F . The Leeuwenhoek Lecture, 1977. Mouse teratocarcinoma and mouse embryo. Proc R Soc Lond B Biol Sci 1978; 201: 249ā270.
Solter D . From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet 2006; 7: 319ā327.
Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154ā156.
Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS . Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 2005; 33: 1526ā1530.
Greber B, Lehrach H, Adjaye J . Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal. BMC Dev Biol 2007; 7: 46.
Jordan CT, Guzman ML, Noble M . Cancer stem cells. N Engl J Med 2006; 355: 1253ā1261.
Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267ā284.
Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730ā737.
Nguyen LV, Vanner R, Dirks P, Eaves CJ . Cancer stem cells: an evolving concept. Nat Rev Cancer 2012; 12: 133ā143.
Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029ā3035.
Yoo MH, Hatfield DL . The cancer stem cell theory: is it correct? Mol Cells 2008; 26: 514ā516.
Gupta PB, Chaffer CL, Weinberg RA . Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010ā1012.
Tomasson MH . Cancer stem cells: a guide for skeptics. J Cell Biochem 2009; 106: 745ā749.
Knoepfler PS . Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 2009; 27: 1050ā1056.
Suva ML, Riggi N, Bernstein BE . Epigenetic reprogramming in cancer. Science 2013; 339: 1567ā1570.
Ben-David U, Benvenisty N . The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11: 268ā277.
Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V, Knoepfler PS . Induced pluripotency and oncogenic transformation are related processes. Stem Cells Dev 2013; 22: 37ā50.
Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 2014; 156: 663ā677.
Spivakov M, Fisher AG . Epigenetic signatures of stem-cell identity. Nat Rev Genet 2007; 8: 263ā271.
Li M, Liu GH, Izpisua Belmonte JC . Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 2012; 13: 524ā535.
Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. Epigenetic stem cell signature in cancer. Nat Genet 2007; 39: 157ā158.
Richly H, Aloia L, Di Croce L . Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis 2011; 2: e204.
Fisher CL, Fisher AG . Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 2011; 21: 140ā146.
Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 2012; 22: 837ā849.
Sharma A, Heuck CJ, Fazzari MJ, Mehta J, Singhal S, Greally JM et al. DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer. Wiley Interdiscip Rev Syst Biol Med 2010; 2: 654ā669.
You JS, Jones PA . Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012; 22: 9ā20.
Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683ā692.
Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148ā1159.
Patra SK, Deb M, Patra A . Molecular marks for epigenetic identification of developmental and cancer stem cells. Clin Epigenetics 2011; 2: 27ā53.
Ohm JE, Mali P, Van Neste L, Berman DM, Liang L, Pandiyan K et al. Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res 2010; 70: 7662ā7673.
Smith ZD, Meissner A . DNA methylation: roles in mammalian development. Nat Rev Genet 2013; 14: 204ā220.
Jones PA, Liang G . Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10: 805ā811.
Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247ā257.
Hochedlinger K, Plath K . Epigenetic reprogramming and induced pluripotency. Development 2009; 136: 509ā523.
Chen T, Ueda Y, Dodge JE, Wang Z, Li E . Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003; 23: 5594ā5605.
Tsumura A, Hayakawa T, Kumaki Y, Takebayashi S, Sakaue M, Matsuoka C et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 2006; 11: 805ā814.
Pawlak M, Jaenisch R . De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev 2011; 25: 1035ā1040.
Baylin SB, Jones PA . A decade of exploring the cancer epigenomeābiological and translational implications. Nat Rev Cancer 2011; 11: 726ā734.
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424ā2433.
Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci USA 2011; 108: 18061ā18066.
Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2003; 33: 61ā65.
Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH . Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 2012; 26: 344ā349.
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324: 930ā935.
Wu SC, Zhang Y . Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010; 11: 607ā620.
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453: 519ā523.
Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, Grabole N et al. Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 2013; 20: 311ā316.
Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HH, Matarese F et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 2013; 13: 360ā369.
Ficz G, Hore TA, Santos F, Lee HJ, Dean W, Arand J et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 2013; 13: 351ā359.
Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011; 8: 200ā213.
Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011; 477: 606ā610.
Stower H . Epigenetics: Reprogramming with TET. Nat Rev Genet 2014; 15: 66.
Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 2012; 488: 652ā655.
Gao Y, Chen J, Li K, Wu T, Huang B, Liu W et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013; 12: 453ā469.
Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013; 495: 370ā374.
Feinberg AP, Vogelstein B . Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89ā92.
Feinberg AP, Vogelstein B . Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 1983; 111: 47ā54.
Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K, Sakamoto H et al. Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res. 2005; 65: 2115ā2124.
Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 2013; 32: 663ā669.
Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012; 150: 1135ā1146.
Yang H, Ye D, Guan KL, Xiong Y . IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012; 18: 5562ā5571.
Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17: 510ā522.
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012; 483: 479ā483.
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553ā567.
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17ā30.
Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468: 839ā843.
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011; 20: 11ā24.
Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 2013; 13: 87ā101.
Sun M, Song CX, Huang H, Frankenberger CA, Sankarasharma D, Gomes S et al. HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci USA 2013; 110: 9920ā9925.
Huang H, Jiang X, Li Z, Li Y, Song CX, He C et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA 2013; 110: 11994ā11999.
Zhang H, Zhang X, Clark E, Mulcahey M, Huang S, Shi YG . TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res 2010; 20: 1390ā1393.
Xu C, Bian C, Lam R, Dong A, Min J . The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain. Nat Commun 2011; 2: 227.
Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693ā705.
Bannister AJ, Kouzarides T . Regulation of chromatin by histone modifications. Cell Res 2011; 21: 381ā395.
Cedar H, Bergman Y . Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10: 295ā304.
Zhou VW, Goren A, Bernstein BE . Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011; 12: 7ā18.
Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007; 8: 286ā298.
van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009; 41: 521ā523.
Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298ā303.
Yuen BT, Knoepfler PS . Histone H3.3 mutations: a variant path to cancer. Cancer Cell 2013; 24: 567ā574.
Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ . Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012; 28: 454ā463.
Knoepfler PS . Why myc? An unexpected ingredient in the stem cell cocktail. Cell Stem Cell 2008; 2: 18ā21.
Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN . Myc influences global chromatin structure. EMBO J 2006; 25: 2723ā2734.
Sauvageau M, Sauvageau G . Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 2010; 7: 299ā313.
Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M . Stem cells and cancer; the polycomb connection. Cell 2004; 118: 409ā418.
Cao R, Tsukada Y, Zhang Y . Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 2005; 20: 845ā854.
Siddique HR, Saleem M . Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells 2012; 30: 372ā378.
Haupt Y, Bath ML, Harris AW, Adams JM . Bmi1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 1993; 8: 3161ā3164.
Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res 2008; 68: 7742ā7749.
Yoshikawa R, Tsujimura T, Tao L, Kamikonya N, Fujiwara Y . The oncoprotein and stem cell renewal factor BMI1 associates with poor clinical outcome in oesophageal cancer patients undergoing preoperative chemoradiotherapy. BMC Cancer 2012; 12: 461.
Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G . BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 2009; 29: 8884ā8896.
Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13: 2678ā2690.
Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12: 982ā992.
Raimondi C, Gianni W, Cortesi E, Gazzaniga P . Cancer stem cells and epithelial-mesenchymal transition: revisiting minimal residual disease. Curr Cancer Drug Targets 2010; 10: 496ā508.
Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW . BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 2011; 112: 2729ā2741.
Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 2013; 154: 311ā324.
Dalerba P, Clarke MF . Oncogenic miRNAs and the perils of losing control of a stem cell's epigenetic identity. Cell Stem Cell 2013; 13: 5ā6.
van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 1994; 8: 757ā769.
Ding X, Lin Q, Ensenat-Waser R, Rose-John S, Zenke M . Polycomb group protein Bmi1 promotes hematopoietic cell development from embryonic stem cells. Stem Cells Dev 2012; 21: 121ā132.
Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012; 483: 598ā602.
Moon JH, Heo JS, Kim JS, Jun EK, Lee JH, Kim A et al. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 2011; 21: 1305ā1315.
Sparmann A, van Lohuizen M . Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006; 6: 846ā856.
Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008; 40: 741ā750.
Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301ā1309.
Thiel AT, Feng Z, Pant DK, Chodosh LA, Hua X . The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPalpha and differentiation in MLL-AF9 leukemia. Haematologica 2013; 98: 918ā927.
Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624ā629.
Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606ā11611.
Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 2011; 19: 86ā100.
Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS et al. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 2012; 72: 335ā345.
Crea F . EZH2 and cancer stem cells: fact or fiction? Epigenomics 2011; 3: 127ā128.
Crea F, Fornaro L, Paolicchi E, Masi G, Frumento P, Loupakis F et al. An EZH2 polymorphism is associated with clinical outcome in metastatic colorectal cancer patients. Ann Oncol 2012; 23: 1207ā1213.
Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 2009; 69: 9211ā9218.
Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE 2008; 3: e3769.
Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871ā874.
Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441: 349ā353.
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301ā313.
Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491ā502.
Pereira CF, Piccolo FM, Tsubouchi T, Sauer S, Ryan NK, Bruno L et al. ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 2010; 6: 547ā556.
Neri F, Zippo A, Krepelova A, Cherubini A, Rocchigiani M, Oliviero S . Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells. Mol Cell Biol 2012; 32: 840ā851.
Ding X, Wang X, Sontag S, Qin J, Wanek P, Lin Q et al. The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation. Stem Cells Dev 2014; 23: 931ā940.
Grimaud C, Negre N, Cavalli G . From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 2006; 14: 363ā375.
Schuettengruber B, Martinez AM, Iovino N, Cavalli G . Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 2011; 12: 799ā814.
Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107ā1117.
Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823ā833.
Milne TA, Kim J, Wang GG, Stadler SC, Basrur V, Whitcomb SJ et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 2010; 38: 853ā863.
Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J et al. Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. Cell Stem Cell 2011; 8: 649ā662.
Ansari KI, Kasiri S, Mandal SS . Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene 2013; 32: 3359ā3370.
Heddleston JM, Wu Q, Rivera M, Minhas S, Lathia JD, Sloan AE et al. Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ 2012; 19: 428ā439.
Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501ā513.
Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 2006; 13: 713ā719.
Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011; 145: 183ā197.
Orkin SH, Hochedlinger K . Chromatin connections to pluripotency and cellular reprogramming. Cell 2011; 145: 835ā850.
Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG . Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 2011; 144: 513ā525.
Amente S, Lania L, Majello B . The histone LSD1 demethylase in stemness and cancer transcription programs. Biochim Biophys Acta 2013; 1829: 981ā986.
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941ā953.
Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437: 436ā439.
Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 2009; 69: 2065ā2071.
Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 2006; 66: 11341ā11347.
Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 2010; 31: 512ā520.
Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 2012; 21: 473ā487.
Wang J, Lu F, Ren Q, Sun H, Xu Z, Lan R et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 2011; 71: 7238ā7249.
Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 2007; 446: 882ā887.
Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 2009; 41: 125ā129.
Whyte WA, Bilodeau S, Orlando DA, Hoke HA, Frampton GM, Foster CT et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 2012; 482: 221ā225.
Yang P, Wang Y, Chen J, Li H, Kang L, Zhang Y et al. RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem Cells 2011; 29: 791ā801.
Hochedlinger K, Yamada Y, Beard C, Jaenisch R . Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005; 121: 465ā477.
Korkaya H, Wicha MS . HER2 and breast cancer stem cells: more than meets the eye. Cancer Res 2013; 73: 3489ā3493.
Chen K, Huang YH, Chen JL . Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34: 732ā740.
Liu L, Andrews LG, Tollefsbol TO . Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death. Oncogene 2006; 25: 4370ā4375.
Facchino S, Abdouh M, Bernier G . Brain cancer stem cells: current status on glioblastoma multiforme. Cancers (Basel) 2011; 3: 1777ā1797.
Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med 2014; 20: 29ā36.
Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8: 890ā896.
McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108ā112.
Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD et al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 2013; 9: 643ā650.
Mack GS . Epigenetic cancer therapy makes headway. J Natl Cancer Inst 2006; 98: 1443ā1444.
de la Serna IL, Ohkawa Y, Imbalzano AN . Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 2006; 7: 461ā473.
Roberts CW, Orkin SH . The SWI/SNF complexāchromatin and cancer. Nat Rev Cancer 2004; 4: 133ā142.
Reisman D, Glaros S, Thompson EA . The SWI/SNF complex and cancer. Oncogene 2009; 28: 1653ā1668.
Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA 2009; 106: 5181ā5186.
Krasteva V, Buscarlet M, Diaz-Tellez A, Bernard MA, Crabtree GR, Lessard JA . The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function. Blood 2012; 120: 4720ā4732.
Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 2010; 141: 943ā955.
Acknowledgements
We thank Bonnie Barrilleaux and Benjamin Yuen for providing feedback on this manuscript. This work was supported by an NIH Grant 1R01GM100782 and a CIRM Grant RN2-00922-1 (both to PSK).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Tung, PY., Knoepfler, P. Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene 34, 2288ā2296 (2015). https://doi.org/10.1038/onc.2014.172
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/onc.2014.172
This article is cited by
-
hUC-MSCs: evaluation of acute and long-term routine toxicity testing in mice and rats
Cytotechnology (2022)