Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Renal tumours in a Tsc2+/− mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin

Abstract

Tuberous sclerosis (TSC) is an inherited syndrome in which tumours in multiple organs are characterised by activation of mammalian target of rapamycin complex 1 (mTORC1). Previous work suggests that mTORC1 activation is associated with feedback inhibition of Akt, a substrate of mTORC2. This could limit TSC-associated tumour growth but lead to paradoxical promotion of tumour cell survival upon treatment with mTOR inhibitors. However, Akt/mTOR signalling has not been fully investigated in TSC-associated tumours and it has been uncertain whether mTOR inhibition can prevent TSC-associated renal tumourigenesis. In this study, we investigated Akt/mTOR signalling in renal tumours using a Tsc2+/− mouse model and tested whether mTOR inhibition could prevent renal tumourigenesis. We found that all renal lesions including cysts, adenomas and carcinomas exhibited activation of both Akt and mTORC1 as evidenced by increased protein expression and phosphorylation of Akt and mTOR and their downstream targets. Protein kinase Cα was also highly expressed and phosphorylated in these lesions, consistent with activation of mTORC2. Surprisingly, IRS proteins were highly expressed, in contrast to a striking decrease seen in cultured Tsc2−/− mouse embryonic fibroblasts, suggesting one mechanism through which loss of feedback inhibition of Akt may occur in mTORC1 hyperactivated Tsc-associated tumours. Long-term treatment with rapamycin reduced both Akt and mTORC1 activity in normal kidney tissues and blocked the development of all types of renal lesions. In conclusion, in contrast to previous studies, we found that Akt signalling is not inhibited in Tsc-associated renal lesions and that by partially inhibiting the Akt/mTOR pathway, rapamycin is highly effective in preventing Tsc-associated tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Xu N, Lao Y, Zhang Y, Gillespie DA . Akt: a double-edged sword in cell proliferation and genome stability. J Oncol 2012; 2012: 951724.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Proud CG . mTOR signalling in health and disease. Biochem Soc Trans 2011; 39: 431–436.

    Article  CAS  PubMed  Google Scholar 

  3. Russell RC, Fang C, Guan KL . An emerging role for TOR signalling in mammalian tissue and stem cell physiology. Development 2011; 138: 3343–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castedo M, Ferri KF, Kroemer G . Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 2002; 9: 99–100.

    Article  CAS  PubMed  Google Scholar 

  5. Shaw RJ, Ras Cantley LC . PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  6. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  7. Dazert E, Hall MN . mTOR signalling in disease. Curr Opin Cell Biol 2011; 23: 744–755.

    Article  CAS  PubMed  Google Scholar 

  8. Song MS, Salmena L, Pandolfi PP . The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13: 283–296.

    Article  CAS  PubMed  Google Scholar 

  9. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. The LKB1 tumor suppressor negatively regulates mTOR signalling. Cancer Cell 2004; 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  10. Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE, Lynch RC et al. TORC1 is essential for NF1-associated malignancies. Curr Biol 2008; 18: 56–62.

    Article  CAS  PubMed  Google Scholar 

  11. Hasumi Y, Baba M, Ajima R, Hasumi H, Valera VA, Klein ME et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci USA 2009; 106: 18722–18727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277: 805–808.

    Article  CAS  PubMed  Google Scholar 

  13. European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75: 1305–1315.

  14. Jaeschke A, Hartkamp J, Saitoh M, Roworth W, Nobukuni T, Hodges A et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 2002; 159: 217–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 2002; 11: 525–534.

    Article  CAS  PubMed  Google Scholar 

  16. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSC1-2 tumor suppressor controls insulin-PI3K signalling via regulation of IRS proteins. J Cell Biol 2004; 166: 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah OJ, Wang Z, Hunter T . Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004; 14: 1650–1656.

    Article  CAS  PubMed  Google Scholar 

  18. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signalling. Science 2011; 332: 1322–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signalling. Science 2011; 332: 1317–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007; 117: 730–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manning BD, Logsdon MN, Lipovsky AI, Abbott D, Kwiatkowski DJ, Cantley LC . Feedback inhibition of Akt signalling limits the growth of tumors lacking Tsc2. Genes Dev 2005; 19: 1773–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Onda H, Lueck A, Marks PW, Warren HB, Kwiatkowski DJ . Tsc2(+/−) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest 1999; 104: 687–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilson C, Idziaszczyk S, Parry L, Guy C, Griffiths DF, Lazda E et al. A mouse model of tuberous sclerosis 1 showing background specific early post-natal mortality and metastatic renal cell carcinoma. Hum Mol Genet 2005; 14: 1839–1850.

    Article  CAS  PubMed  Google Scholar 

  24. Lee L, Sudentas P, Donohue B, Asrican K, Worku A, Walker V et al. Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models. Genes Chromosomes Cancer 2005; 42: 213–227.

    Article  CAS  PubMed  Google Scholar 

  25. Pollizzi K, Malinowska-Kolodziej I, Stumm M, Lane H, Kwiatkowski D . Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis. Mol Cancer 2009; 8: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008; 358: 140–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. New Engl J Med 2010; 363: 1801–1811.

    Article  CAS  PubMed  Google Scholar 

  28. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signalling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11: 859–871.

    Article  CAS  PubMed  Google Scholar 

  29. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL . Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008; 27: 1919–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalogerou M, Zhang Y, Yang J, Garrahan N, Paisey S, Tokarczuk P et al. T2 weighted MRI for assessing renal lesions in transgenic mouse models of tuberous sclerosis. Eur J Radiol 2012; 81: 2069–2074.

    Article  PubMed  Google Scholar 

  31. Huang J, Wu S, Wu CL, Manning BD . Signaling events downstream of mammalian target of rapamycin complex2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res 2009; 69: 6107–6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. mTOR inhibition induces upstream receptor tyrosine kinase signalling and activates Akt. Cancer Res 2006; 66: 1500–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ . Rapamycin induces feedback activation of Akt signalling through an IGF-1R-dependent mechanism. Oncogene 2007; 26: 1932–1940.

    Article  CAS  PubMed  Google Scholar 

  35. Xu X, Keshwani M, Meyer K, Sarikas A, Taylor S, Pan ZQ . Identification of the degradation determinants of insulin receptor substrate 1 for signaling cullin-RING E3 ubiquitin ligase 7-mediated ubiquitination. J Biol Chem 2012; 287: 40758–40766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159–168.

    Article  CAS  PubMed  Google Scholar 

  37. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335: 1638–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signalling through downregulation of PDGFR. J Clin Invest 2003; 112: 1223–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr David Kwiatkowski for providing the Tsc2+/− mouse model. This project was supported by the Wales Gene Park, UK and the Tuberous Sclerosis Association, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Shen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Kalogerou, M., Samsel, P. et al. Renal tumours in a Tsc2+/− mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin. Oncogene 34, 922–931 (2015). https://doi.org/10.1038/onc.2014.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.17

This article is cited by

Search

Quick links