Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Src kinase function controls progenitor cell pools during regeneration and tumor onset in the Drosophila intestine

Abstract

Src non-receptor kinases have been implicated in events late in tumor progression. Here, we study the role of Src kinases in the Drosophila intestinal stem cell (ISC) lineage, during tissue homeostasis and tumor onset. The adult Drosophila intestine contains only two progenitor cell types, division-capable ISCs and their daughters, postmitotic enteroblasts (EBs). We found that Drosophila Src42a and Src64b were required for optimal regenerative ISC division. Conversely, activation of Src42a, Src64b or another non-receptor kinase, Ack, promoted division of quiescent ISCs by coordinately stimulating G1/S and G2/M cell cycle phase progression. Prolonged Src kinase activation caused tissue overgrowth owing to cytokine receptor-independent Stat92E activation. This was not due to increased symmetric division of ISCs, but involved accumulation of weakly specified Notch+ but division-capable EB-like cells. Src activation triggered expression of a mitogenic module consisting of String/Cdc25 and Cyclin E that was sufficient to elicit division not only of ISCs but also of EBs. A small pool of similarly division-capable transit-amplifying Notch+ EBs was also identified in the wild type. Expansion of intermediate cell types that do not robustly manifest their transit-amplifying potential in the wild type may also contribute to regenerative growth and tumor development in other tissues in other organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N . Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 1987; 84: 2251–2255.

    CAS  Google Scholar 

  2. Yeatman TJ . A renaissance for SRC. Nat Rev Cancer 2004; 4: 470–480.

    CAS  Google Scholar 

  3. Cartwright CA, Meisler AI, Eckhart W . Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis. Proc Natl Acad Sci USA 1990; 87: 558–562.

    CAS  Google Scholar 

  4. Brunton VG, Ozanne BW, Paraskeva C, Frame MC . A role for epidermal growth factor receptor, c-Src and focal adhesion kinase in an in vitro model for the progression of colon cancer. Oncogene 1997; 14: 283–293.

    CAS  Google Scholar 

  5. Stewart RA, Li DM, Huang H, Xu T . A genetic screen for modifiers of the lats tumor suppressor gene identifies C-terminal Src kinase as a regulator of cell proliferation in Drosophila. Oncogene 2003; 22: 6436–6444.

    CAS  Google Scholar 

  6. Read RD, Bach EA, Cagan RL . Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol Cell Biol 2004; 24: 6676–6689.

    CAS  Google Scholar 

  7. Pedraza LG, Stewart RA, Li DM, Xu T . Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 2004; 23: 4754–4762.

    CAS  Google Scholar 

  8. Vidal M, Larson DE, Cagan RL . Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 2006; 10: 33–44.

    CAS  Google Scholar 

  9. Vidal M, Warner S, Read R, Cagan RL . Differing Src signaling levels have distinct outcomes in Drosophila. Cancer Res 2007; 67: 10278–10285.

    CAS  Google Scholar 

  10. Enomoto M, Igaki T . Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Rep 2013; 14: 65–72.

    CAS  Google Scholar 

  11. Fernandez BG, Jezowska B, Janody F . Drosophila actin-capping protein limits JNK activation by the Src proto-oncogene. Oncogene 2013; 33: 2027–39.

    Google Scholar 

  12. Klinghoffer RA, Sachsenmaier C, Cooper JA, Soriano P . Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 1999; 18: 2459–2471.

    CAS  Google Scholar 

  13. Ohlstein B, Spradling A . The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 2006; 439: 470–474.

    CAS  Google Scholar 

  14. Micchelli CA, Perrimon N . Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 2006; 439: 475–479.

    CAS  Google Scholar 

  15. Amcheslavsky A, Jiang J, Ip YT . Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 2009; 4: 49–61.

    CAS  Google Scholar 

  16. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B . Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 2009; 23: 2333–2344.

    CAS  Google Scholar 

  17. Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 2009; 325: 340–343.

    CAS  Google Scholar 

  18. Biteau B, Hochmuth CE, Jasper H . JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 2008; 3: 442–455.

    CAS  Google Scholar 

  19. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA . Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 2009; 137: 1343–1355.

    Google Scholar 

  20. Lee WC, Beebe K, Sudmeier L, Micchelli CA . Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 2009; 136: 2255–2264.

    CAS  Google Scholar 

  21. Apidianakis Y, Pitsouli C, Perrimon N, Rahme L . Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci USA 2009; 106: 20883–20888.

    CAS  Google Scholar 

  22. Ohlstein B, Spradling A . Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 2007; 315: 988–992.

    CAS  Google Scholar 

  23. Barone MV, Courtneidge SA . Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src. Nature 1995; 378: 509–512.

    CAS  Google Scholar 

  24. Roche S, Fumagalli S, Courtneidge SA . Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 1995; 269: 1567–1569.

    CAS  Google Scholar 

  25. Abram CL, Courtneidge SA . Src family tyrosine kinases and growth factor signaling. Exp Cell Res 2000; 254: 1–13.

    CAS  Google Scholar 

  26. Prathapam T, Tegen S, Oskarsson T, Trumpp A, Martin GS . Activated Src abrogates the Myc requirement for the G0/G1 transition but not for the G1/S transition. Proc Natl Acad Sci USA 2006; 103: 2695–2700.

    CAS  Google Scholar 

  27. Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S et al. P27 phosphorylation by Src regulates inhibition of cyclin E–Cdk2. Cell 2007; 128: 281–294.

    CAS  Google Scholar 

  28. Ishizawar R, Parsons SJ . c-Src and cooperating partners in human cancer. Cancer Cell 2004; 6: 209–214.

    CAS  Google Scholar 

  29. Sotillos S, Krahn M, Espinosa-Vazquez JM, Hombria JC . Src kinases mediate the interaction of the apical determinant Bazooka/PAR3 with STAT92E and increase signalling efficiency in Drosophila ectodermal cells. Development 2013; 140: 1507–1516.

    CAS  Google Scholar 

  30. Beebe K, Lee WC, Micchelli CA . JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol 2010; 338: 28–37.

    CAS  Google Scholar 

  31. Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA . EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 2011; 8: 84–95.

    CAS  Google Scholar 

  32. Thomas SM, Brugge JS . Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997; 13: 513–609.

    CAS  Google Scholar 

  33. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B . Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 2009; 5: 200–211.

    CAS  Google Scholar 

  34. Goulas S, Conder R, Knoblich JA . The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 2012; 11: 529–540.

    CAS  Google Scholar 

  35. Perdigoto CN, Schweisguth F, Bardin AJ . Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development 2011; 138: 4585–4595.

    CAS  Google Scholar 

  36. Knoblich JA . Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 2010; 11: 849–860.

    CAS  Google Scholar 

  37. Nasmyth K . A prize for proliferation. Cell 2001; 107: 689–701.

    CAS  Google Scholar 

  38. Dimova DK, Stevaux O, Frolov MV, Dyson NJ . Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev 2003; 17: 2308–2320.

    CAS  Google Scholar 

  39. Pesin JA, Orr-Weaver TL . Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 2008; 24: 475–499.

    CAS  Google Scholar 

  40. Buttitta LA, Katzaroff AJ, Perez CL, de la Cruz A, Edgar BA . A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila. Dev Cell 2007; 12: 631–643.

    CAS  Google Scholar 

  41. Shibutani ST, de la Cruz AF, Tran V, Turbyfill WJ 3rd, Reis T, Edgar BA et al. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev Cell 2008; 15: 890–900.

    CAS  Google Scholar 

  42. Buttitta LA, Katzaroff AJ, Edgar BA . A robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo. J Cell Biol 2010; 189: 981–996.

    CAS  Google Scholar 

  43. Prieto-Echague V, Miller WT . Regulation of Ack-family nonreceptor tyrosine kinases. J Signal Transd 2011; 2011: 742372.

    Google Scholar 

  44. Sem KP, Zahedi B, Tan I, Deak M, Lim L, Harden N . ACK family tyrosine kinase activity is a component of Dcdc42 signaling during dorsal closure in Drosophila melanogaster. Mol Cell Biol 2002; 22: 3685–3697.

    CAS  Google Scholar 

  45. Schoenherr JA, Drennan JM, Martinez JS, Chikka MR, Hall MC, Chang HC et al. Drosophila activated Cdc42 kinase has an anti-apoptotic function. PLoS Genet 2012; 8: e1002725.

    CAS  Google Scholar 

  46. Abdallah AM, Zhou X, Kim C, Shah KK, Hogden C, Schoenherr JA et al. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis. Dev Biol 2013; 378: 141–153.

    CAS  Google Scholar 

  47. Jiang H, Edgar BA . EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 2009; 136: 483–493.

    CAS  Google Scholar 

  48. Buchon N, Broderick NA, Kuraishi T, Lemaitre B . Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 2010; 8: 152.

    CAS  Google Scholar 

  49. Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA . Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 2008; 7: 318–334.

    CAS  Google Scholar 

  50. Shindo M, Wada H, Kaido M, Tateno M, Aigaki T, Tsuda L et al. Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development 2008; 135: 1355–1364.

    CAS  Google Scholar 

  51. Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ . Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci USA 1995; 92: 6981–6985.

    CAS  Google Scholar 

  52. Smith MR, DeGudicibus SJ, Stacey DW . Requirement for c-ras proteins during viral oncogene transformation. Nature 1986; 320: 540–543.

    CAS  Google Scholar 

  53. Cao X, Tay A, Guy GR, Tan YH . Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol 1996; 16: 1595–1603.

    CAS  Google Scholar 

  54. Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE . ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 1999; 274: 17209–17218.

    CAS  Google Scholar 

  55. Cordero JB, Stefanatos RK, Myant K, Vidal M, Sansom OJ . Non-autonomous crosstalk between the Jak/Stat and Egfr pathways mediates Apc1-driven intestinal stem cell hyperplasia in the Drosophila adult midgut. Development 2012; 139: 4524–4535.

    CAS  Google Scholar 

  56. Kim M, Cha GH, Kim S, Lee JH, Park J, Koh H et al. MKP-3 has essential roles as a negative regulator of the Ras/mitogen-activated protein kinase pathway during Drosophila development. Mol Cell Biol 2004; 24: 573–583.

    CAS  Google Scholar 

  57. Brown S, Hu N, Hombria JC . Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 2001; 11: 1700–1705.

    CAS  Google Scholar 

  58. Guest ST, Yu J, Liu D, Hines JA, Kashat MA, Finley RL Jr . A protein network-guided screen for cell cycle regulators in Drosophila. BMC Syst Biol 2011; 5: 65.

    CAS  Google Scholar 

  59. Edgar BA, Lehman DA, O'Farrell PH . Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle. Development 1994; 120: 3131–3143.

    CAS  Google Scholar 

  60. Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA . Coordination of growth and cell division in the Drosophila wing. Cell 1998; 93: 1183–1193.

    CAS  Google Scholar 

  61. Reis T, Edgar BA . Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell 2004; 117: 253–264.

    CAS  Google Scholar 

  62. Prokopenko SN, Chia W . When timing is everything: role of cell cycle regulation in asymmetric division. Semin Cell Dev Biol 2005; 16: 423–437.

    CAS  Google Scholar 

  63. Orford KW, Scadden DT . Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 2008; 9: 115–128.

    CAS  Google Scholar 

  64. Kohlmaier A, Edgar BA . Proliferative control in Drosophila stem cells. Curr Opin Cell Biol 2008; 20: 699–706.

    CAS  Google Scholar 

  65. Buchon N, Osman D, David FP, Fang HY, Boquete JP, Deplancke B et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 2013; 3: 1725–1738.

    CAS  Google Scholar 

  66. Kapuria S, Karpac J, Biteau B, Hwangbo D, Jasper H . Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLoS Genet 2012; 8: e1003045.

    CAS  Google Scholar 

  67. Wang H, Ouyang Y, Somers WG, Chia W, Lu B . Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 2007; 449: 96–100.

    CAS  Google Scholar 

  68. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM . Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003; 113: 25–36.

    CAS  Google Scholar 

  69. Zeng X, Chauhan C, Hou SX . Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in Drosophila. Genesis 2010; 48: 607–611.

    CAS  Google Scholar 

  70. Zielke N, Edgar BA, DePamphilis ML . Endoreplication. Cold Spring Harb Perspect Biol 2013; 5: a012948.

    Google Scholar 

  71. Chau J, Kulnane LS, Salz HK . Sex-lethal facilitates the transition from germline stem cell to committed daughter cell in the Drosophila ovary. Genetics 2009; 182: 121–132.

    CAS  Google Scholar 

  72. Zielke N, Querings S, Rottig C, Lehner C, Sprenger F . The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev 2008; 22: 1690–1703.

    CAS  Google Scholar 

  73. de Navascues J, Perdigoto CN, Bian Y, Schneider MH, Bardin AJ, Martinez-Arias A et al. Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. EMBO J 2012; 31: 2473–2485.

    CAS  Google Scholar 

  74. O'Brien LE, Soliman SS, Li X, Bilder D . Altered modes of stem cell division drive adaptive intestinal growth. Cell 2011; 147: 603–614.

    CAS  Google Scholar 

  75. Ren Z, Schaefer TS . ErbB-2 activates Stat3 alpha in a Src- and JAK2-dependent manner. J Biol Chem 2002; 277: 38486–38493.

    CAS  Google Scholar 

  76. Quesnelle KM, Boehm AL, Grandis JR . STAT-mediated EGFR signaling in cancer. J Cell Biochem 2007; 102: 311–319.

    CAS  Google Scholar 

  77. Herranz H, Hong X, Hung NT, Voorhoeve PM, Cohen SM . Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes Dev 2012; 26: 1602–1611.

    CAS  Google Scholar 

  78. Silva CM . Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 2004; 23: 8017–8023.

    CAS  Google Scholar 

  79. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R . Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 1998; 18: 2545–2552.

    CAS  Google Scholar 

  80. Zhong Z, Wen Z, Darnell JE Jr . Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 264: 95–98.

    CAS  Google Scholar 

  81. Huang J, Wu S, Barrera J, Matthews K, Pan D . The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 2005; 122: 421–434.

    CAS  Google Scholar 

  82. Baonza A, Murawsky CM, Travers AA, Freeman M . Pointed and Tramtrack69 establish an EGFR-dependent transcriptional switch to regulate mitosis. Nat Cell Biol 2002; 4: 976–980.

    CAS  Google Scholar 

  83. Huang H, Li J, Hu L, Ge L, Ji H, Zhao Y et al. Bantam is essential for Drosophila intestinal stem cell proliferation in response to Hippo signaling. Dev Biol 2014; 385: 211–219.

    CAS  Google Scholar 

  84. Ren F, Shi Q, Chen Y, Jiang A, Ip YT, Jiang H et al. Drosophila Myc integrates multiple signaling pathways to regulate intestinal stem cell proliferation during midgut regeneration. Cell Res 2013; 23: 1133–1146.

    CAS  Google Scholar 

  85. Herranz H, Hong X, Cohen SM . Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol 2012; 22: 651–657.

    CAS  Google Scholar 

  86. Herranz H, Perez L, Martin FA, Milan M . A wingless and Notch double-repression mechanism regulates G1–S transition in the Drosophila wing. EMBO J 2008; 27: 1633–1645.

    CAS  Google Scholar 

  87. Irby RB, Yeatman TJ . Role of Src expression and activation in human cancer. Oncogene 2000; 19: 5636–5642.

    CAS  Google Scholar 

  88. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    CAS  Google Scholar 

  89. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K . STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol cell 2010; 39: 493–506.

    CAS  Google Scholar 

  90. Buttitta LA, Edgar BA . Mechanisms controlling cell cycle exit upon terminal differentiation. Curr Opin Cell Biol 2007; 19: 697–704.

    CAS  Google Scholar 

  91. Liu W, Singh SR, Hou SX . JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 2010; 109: 992–999.

    CAS  Google Scholar 

  92. Schaeffer V, Althauser C, Shcherbata HR, Deng WM, Ruohola-Baker H . Notch-dependent Fizzy-related/Hec1/Cdh1 expression is required for the mitotic-to-endocycle transition in Drosophila follicle cells. Curr Biol 2004; 14: 630–636.

    CAS  Google Scholar 

  93. Shcherbata HR, Althauser C, Findley SD, Ruohola-Baker H . The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 2004; 131: 3169–3181.

    CAS  Google Scholar 

  94. Weiss A, Herzig A, Jacobs H, Lehner CF . Continuous cyclin E expression inhibits progression through endoreduplication cycles in Drosophila. Curr Biol 1998; 8: 239–242.

    CAS  Google Scholar 

  95. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25–38.

    CAS  Google Scholar 

  96. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA . The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 2008; 14: 535–546.

    CAS  Google Scholar 

  97. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676–682.

    CAS  Google Scholar 

  98. Zielke N, Kim KJ, Tran V, Shibutani ST, Bravo MJ, Nagarajan S et al. Control of Drosophila endocycles by E2F and CRL4(CDT2). Nature 2011; 480: 123–127.

    CAS  Google Scholar 

  99. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N . The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 2010; 137: 4147–4158.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank David Ibbserson and the Deep Sequencing Core Facility of CellNetworks University of Heidelberg and the Fred Hutchinson Cancer Research Center Seattle for RNA and library preparations and sequencing. We thank Nicholas Harden, Yuh Nung Jan, Marco Milàn, Steven Hou, Sarah Bray, Sol Sotillos and the Yale FlyTrap consortium (USA) for gifts of fly stocks. We are grateful to Sylvia Kreger for experimental support and Monika Langlotz (ZMBH) for help with FACS. We thank Juanita Reetz for critically reading of the manuscript. Work in BAE’s laboratory was funded by ERC Grant 268515, NIH Grant R01 GM51186 and DFG Grant SFB873. AK was supported by a Human Frontiers in Science Program Long-Term postdoctoral fellowship (LT00316/2008-L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Edgar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlmaier, A., Fassnacht, C., Jin, Y. et al. Src kinase function controls progenitor cell pools during regeneration and tumor onset in the Drosophila intestine. Oncogene 34, 2371–2384 (2015). https://doi.org/10.1038/onc.2014.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.163

This article is cited by

Search

Quick links