Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An intergenic regulatory region mediates Drosophila Myc-induced apoptosis and blocks tissue hyperplasia

Subjects

An Erratum to this article was published on 30 April 2015

This article has been updated

Abstract

Induction of cell-autonomous apoptosis following oncogene-induced overproliferation is a major tumor-suppressive mechanism in vertebrates. However, the detailed mechanism mediating this process remains enigmatic. In this study, we demonstrate that dMyc-induced cell-autonomous apoptosis in the fruit fly Drosophila melanogaster relies on an intergenic sequence termed the IRER (irradiation-responsive enhancer region). The IRER mediates the expression of surrounding proapoptotic genes, and we use an in vivo reporter of the IRER chromatin state to gather evidence that epigenetic control of DNA accessibility within the IRER is an important determinant of the strength of this response to excess dMyc. In a previous work, we showed that the IRER also mediates P53-dependent induction of proapoptotic genes following DNA damage, and the chromatin conformation within IRER is regulated by polycomb group-mediated histone modifications. dMyc-induced apoptosis and the P53-mediated DNA damage response thus overlap in a requirement for the IRER. The epigenetic mechanisms controlling IRER accessibility appear to set thresholds for the P53- and dMyc-induced expression of apoptotic genes in vivo and may have a profound impact on cellular sensitivity to oncogene-induced stress.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 30 April 2015

    This article has been corrected since Advance Online Publication and an erratum is also printed in this issue

References

  1. Meyer N, Kim SS, Penn LZ . The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 2006; 16: 275–287.

    Article  CAS  Google Scholar 

  2. Pelengaris S, Khan M, Evan GI . Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002; 109: 321–334.

    Article  CAS  Google Scholar 

  3. Letai A, Sorcinelli MD, Beard C, Korsmeyer SJ . Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 2004; 6: 241–249.

    Article  CAS  Google Scholar 

  4. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331–333.

    Article  CAS  Google Scholar 

  5. Harrington EA, Bennett MR, Fanidi A, Evan GI . c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J 1994; 13: 3286–3295.

    Article  CAS  Google Scholar 

  6. Hoffman B, Liebermann DA . Apoptotic signaling by c-MYC. Oncogene 2008; 27: 6462–6472.

    Article  CAS  Google Scholar 

  7. Scott CL, Schuler M, Marsden VS, Egle A, Pellegrini M, Nesic D, et al. Apaf-1 and caspase-9 do not act as tumor suppressors in myc-induced lymphomagenesis or mouse embryo fibroblast transformation. J Cell Biol 2004; 164: 89–96.

    Article  CAS  Google Scholar 

  8. Hsu B, Marin MC, Elnaggar AK, Stephens LC, Brisbay S, Mcdonnell TJ . Evidence that C-Myc mediated apoptosis does not require wild-type P53 during lymphomagenesis. Oncogene 1995; 11: 175–179.

    CAS  Google Scholar 

  9. Montero L, Muller N, Gallant P . Induction of apoptosis by Drosophila Myc. Genesis 2008; 46: 104–111.

    Article  CAS  Google Scholar 

  10. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA . Drosophila myc regulates organ size by inducing cell competition. Cell 2004; 117: 107–116.

    Article  CAS  Google Scholar 

  11. Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P . Drosophila myc regulates cellular growth during development. Cell 1999; 98: 779–790.

    Article  CAS  Google Scholar 

  12. Zhang Y, Lin N, Carroll PM, Chan G, Guan B, Xiao H, et al. Epigenetic blocking of an enhancer region controls irradiation-induced proapoptotic gene expression in Drosophila embryos. Dev Cell 2008; 14: 481–493.

    Article  CAS  Google Scholar 

  13. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM . Drosophila p53 binds a damage response element at the reaper locus. Cell 2000; 101: 103–113.

    Article  CAS  Google Scholar 

  14. Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG, et al. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 2004; 24: 1219–1231.

    Article  CAS  Google Scholar 

  15. Wichmann A, Jaklevic B, Su TT . Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci USA 2006; 103: 9952–9957.

    Article  CAS  Google Scholar 

  16. Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, Drummond J, et al. The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 2004; 167: 797–813.

    Article  CAS  Google Scholar 

  17. Zhou L, Hashimi H, Schwartz LM, Nambu JR . Programmed cell death in the Drosophila central nervous system midline. Curr Biol 1995; 5: 784–790.

    Article  CAS  Google Scholar 

  18. Gambis A, Dourlen P, Steller H, Mollereau B . Two-color in vivo imaging of photoreceptor apoptosis and development in Drosophila. Dev Biol. 2011; 351: 128–134.

    Article  CAS  Google Scholar 

  19. Gallant P . Drosophila Myc. Adv Cancer Res 2009; 103: 111–144.

    Article  CAS  Google Scholar 

  20. Verghese S, Bedi S, Kango-Singh M . Hippo signalling controls Dronc activity to regulate organ size in Drosophila. Cell Death Differ 2012; 19: 1664–1676.

    Article  CAS  Google Scholar 

  21. Lee T, Luo L . Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 2001; 24: 251–254.

    Article  CAS  Google Scholar 

  22. Bellosta P, Gallant P . Myc function in Drosophila. Genes Cancer 2010; 1: 542–546.

    Article  CAS  Google Scholar 

  23. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005; 436: 807–811.

    Article  CAS  Google Scholar 

  24. Lin N, Zhang C, Pang J, Zhou L . By design or by chance: cell death during Drosophila embryogenesis. Apoptosis 2009; 14: 935–942.

    Article  Google Scholar 

  25. Steller H . Regulation of apoptosis in Drosophila. Cell Death Differ 2008; 15: 1132–1138.

    Article  CAS  Google Scholar 

  26. Tan Y, Yamada-Mabuchi M, Arya R St, Pierre S, Tang W, Tosa M, et al. Coordinated expression of cell death genes regulates neuroblast apoptosis. Development 2011; 138: 2197–2206.

    Article  CAS  Google Scholar 

  27. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315–326.

    Article  CAS  Google Scholar 

  28. Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engstrom PG, Fredman D, et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 2007; 17: 545–555.

    Article  CAS  Google Scholar 

  29. Baylin SB, Jones PA . A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 2011; 11: 726–734.

    Article  CAS  Google Scholar 

  30. Yamashita M, Kuwahara M, Suzuki A, Hirahara K, Shinnaksu R, Hosokawa H, et al. Bmi1 regulates memory CD4 T cell survival via repression of the Noxa gene. J Exp Med 2008; 205: 1109–1120.

    Article  CAS  Google Scholar 

  31. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13: 2678–2690.

    Article  CAS  Google Scholar 

  32. Gong WJ, Golic KG . Ends-out or replacement, gene targeting in Drosophila. Proc Natl Acad Sci USA 2003; 100: 2556–2561.

    Article  CAS  Google Scholar 

  33. Venken KJ, He Y, Hoskins RA, Bellen HJ . P [acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 2006; 314: 1747–1751.

    Article  CAS  Google Scholar 

  34. Sullivan W Ashburner M Hawley RS . Drosophila Protocols, 1st edn. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press, 2000.

  35. Gilchrist AS, Partridge L . A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster. Genetics 1999; 153: 1775–1787.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Laura Johnston (Columbia University), Dr Kristin White (Massachusetts General Hospital), the Bloomington stock center and Vienna Drosophila RNAi Center for providing us fly strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Zhou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Casas-Tintó, S., Li, G. et al. An intergenic regulatory region mediates Drosophila Myc-induced apoptosis and blocks tissue hyperplasia. Oncogene 34, 2385–2397 (2015). https://doi.org/10.1038/onc.2014.160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.160

This article is cited by

Search

Quick links