Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects

Subjects

Abstract

Androgen receptor (AR) signaling is a critical pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. However, over time, most tumors become resistant to ADT. The view of castration-resistant prostate cancer (CRPC) has changed dramatically in the last several years. Progress in understanding the disease biology and mechanisms of castration resistance led to significant advancements and to paradigm shift in the treatment. Accumulating evidence showed that prostate cancers develop adaptive mechanisms for maintaining AR signaling to allow for survival and further evolution. The aim of this review is to summarize molecular mechanisms of castration resistance and provide an update in the development of novel agents and strategies to more effectively target the AR signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Huggins C, Hodges CV . Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941; 1: 293–297.

    CAS  Google Scholar 

  2. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013; 368: 138–148.

    CAS  PubMed  Google Scholar 

  4. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    CAS  PubMed  Google Scholar 

  5. Garraway LA, Sellers WR . Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 2006; 6: 593–602.

    CAS  PubMed  Google Scholar 

  6. Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO . Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 1991; 5: 1396–1404.

    CAS  PubMed  Google Scholar 

  7. Heinlein CA, Chang C . Androgen receptor (AR) coregulators: an overview. Endocr Rev 2002; 23: 175–200.

    CAS  PubMed  Google Scholar 

  8. Georget V, Terouanne B, Nicolas JC, Sultan C . Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 2002; 41: 11824–11831.

    CAS  PubMed  Google Scholar 

  9. Prescott J, Coetzee GA . Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett 2006; 231: 12–19.

    CAS  PubMed  Google Scholar 

  10. van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G . Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352: 57–69.

    CAS  PubMed  Google Scholar 

  11. Askew EB, Minges JT, Hnat AT, Wilson EM . Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Mol Cell Endocrinol 2012; 348: 403–410.

    CAS  PubMed  Google Scholar 

  12. Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA et al. The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci USA 2005; 102: 9802–9807.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL, Dubbink HJ et al. Compartmentalization of androgen receptor protein-protein interactions in living cells. J Cell Biol 2007; 177: 63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. He B, Kemppainen JA, Wilson EM . FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 2000; 275: 22986–22994.

    CAS  PubMed  Google Scholar 

  15. Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE . Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 2008; 121: 957–968.

    CAS  PubMed  Google Scholar 

  16. Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 2007; 67: 10455–10465.

    CAS  PubMed  Google Scholar 

  17. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    CAS  PubMed  Google Scholar 

  18. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 2010; 16: 793–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Attard G, de Bono JS, Clark J, Cooper CS . Studies of TMPRSS2-ERG gene fusions in diagnostic trans-rectal prostate biopsies. Clin Cancer Res 2010; 16: 1340; author reply 1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A'Hern R et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 2009; 69: 2912–2918.

    CAS  PubMed  Google Scholar 

  21. Lu S, Jenster G, Epner DE . Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol 2000; 14: 753–760.

    CAS  PubMed  Google Scholar 

  22. Cinar B, Mukhopadhyay NK, Meng G, Freeman MR . Phosphoinositide 3-kinase-independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains. J Biol Chem 2007; 282: 29584–29593.

    CAS  PubMed  Google Scholar 

  23. Castoria G, Lombardi M, Barone MV, Bilancio A, Di Domenico M, De Falco A et al. Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids 2004; 69: 517–522.

    CAS  PubMed  Google Scholar 

  24. Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA et al. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 2004; 64: 7156–7168.

    CAS  PubMed  Google Scholar 

  25. Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 2007; 67: 5033–5041.

    CAS  PubMed  Google Scholar 

  26. Geller J, Albert J, Loza D, Geller S, Stoeltzing W, de la Vega D . DHT concentrations in human prostate cancer tissue. J Clin Endocrinol Metab 1978; 46: 440–444.

    CAS  PubMed  Google Scholar 

  27. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 2008; 68: 4447–4454.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL . Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005; 11: 4653–4657.

    CAS  PubMed  Google Scholar 

  29. Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 2008; 68: 6407–6415.

    CAS  PubMed  Google Scholar 

  30. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006; 66: 2815–2825.

    CAS  PubMed  Google Scholar 

  31. Mitsiades N, Sung CC, Schultz N, Danila DC, He B, Eedunuri VK et al. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res 2012; 72: 6142–6152.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell DW, Wilson JD . Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem 1994; 63: 25–61.

    CAS  PubMed  Google Scholar 

  33. Uemura M, Tamura K, Chung S, Honma S, Okuyama A, Nakamura Y et al. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci 2008; 99: 81–86.

    CAS  PubMed  Google Scholar 

  34. Godoy A, Kawinski E, Li Y, Oka D, Alexiev B, Azzouni F et al. 5alpha-reductase type 3 expression in human benign and malignant tissues: a comparative analysis during prostate cancer progression. Prostate 2011; 71: 1033–1046.

    CAS  PubMed  Google Scholar 

  35. Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 2013; 154: 1074–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brooke GN, Bevan CL . The role of androgen receptor mutations in prostate cancer progression. Curr Genomics 2009; 10: 18–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bergerat JP, Ceraline J . Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 2009; 30: 145–157.

    CAS  PubMed  Google Scholar 

  38. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393–1398.

    CAS  PubMed  Google Scholar 

  39. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 2003; 21: 2673–2678.

    Article  CAS  PubMed  Google Scholar 

  40. Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 1541–1550.

    CAS  PubMed  Google Scholar 

  41. Wallen MJ, Linja M, Kaartinen K, Schleutker J, Visakorpi T . Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol 1999; 189: 559–563.

    CAS  PubMed  Google Scholar 

  42. Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999; 59: 2511–2515.

    CAS  PubMed  Google Scholar 

  43. Steinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 2009; 69: 4434–4442.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Scher HI, Kelly WK . Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J Clin Oncol 1993; 11: 1566–1572.

    CAS  PubMed  Google Scholar 

  45. Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 2003; 63: 149–153.

    CAS  PubMed  Google Scholar 

  46. Okegawa T, Nutahara K, Higashihara E . Alternative antiandrogen therapy in patients with castration-resistant prostate cancer: a single-center experience. Int J Urol 2010; 17: 950–955.

    PubMed  Google Scholar 

  47. Choi JI, Kim YB, Yang SO, Lee JK, Jung TY . Efficacy of alternative antiandrogen therapy for prostate cancer that relapsed after initial maximum androgen blockade. Korean J Urol 2011; 52: 461–465.

    PubMed  PubMed Central  Google Scholar 

  48. Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 2013; 3: 1030–1043.

    CAS  PubMed  Google Scholar 

  49. Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK, Watson PA et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2013; 2: e00499.

    PubMed  PubMed Central  Google Scholar 

  50. Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 2013; 3: 1020–1029.

    CAS  PubMed  Google Scholar 

  51. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999; 59: 803–806.

    CAS  PubMed  Google Scholar 

  52. Haapala K, Kuukasjarvi T, Hyytinen E, Rantala I, Helin HJ, Koivisto PA . Androgen receptor amplification is associated with increased cell proliferation in prostate cancer. Hum Pathol 2007; 38: 474–478.

    CAS  PubMed  Google Scholar 

  53. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T . Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001; 61: 3550–3555.

    CAS  PubMed  Google Scholar 

  54. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57: 314–319.

    CAS  PubMed  Google Scholar 

  56. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–406.

    CAS  PubMed  Google Scholar 

  57. Miyoshi Y, Uemura H, Fujinami K, Mikata K, Harada M, Kitamura H et al. Fluorescence in situ hybridization evaluation of c-myc and androgen receptor gene amplification and chromosomal anomalies in prostate cancer in Japanese patients. Prostate 2000; 43: 225–232.

    CAS  PubMed  Google Scholar 

  58. Leversha MA, Han J, Asgari Z, Danila DC, Lin O, Gonzalez-Espinoza R et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res 2009; 15: 2091–2097.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK et al. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 2009; 175: 489–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 2010; 120: 4478–4492.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res 2013; 73: 1232–1244.

    CAS  PubMed  Google Scholar 

  62. Wiren KM, Zhang X, Chang C, Keenan E, Orwoll ES . Transcriptional up-regulation of the human androgen receptor by androgen in bone cells. Endocrinology 1997; 138: 2291–2300.

    CAS  PubMed  Google Scholar 

  63. Wolf DA, Herzinger T, Hermeking H, Blaschke D, Horz W . Transcriptional and posttranscriptional regulation of human androgen receptor expression by androgen. Mol Endocrinol 1993; 7: 924–936.

    CAS  PubMed  Google Scholar 

  64. Grad JM, Dai JL, Wu S, Burnstein KL . Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA. Mol Endocrinol 1999; 13: 1896–1911.

    CAS  PubMed  Google Scholar 

  65. Grad JM, Lyons LS, Robins DM, Burnstein KL . The androgen receptor (AR) amino-terminus imposes androgen-specific regulation of AR gene expression via an exonic enhancer. Endocrinology 2001; 142: 1107–1116.

    CAS  PubMed  Google Scholar 

  66. Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Janne OA et al. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 2009; 69: 8141–8149.

    CAS  PubMed  Google Scholar 

  67. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    PubMed  Google Scholar 

  68. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69: 16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ . Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008; 68: 5469–5477.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69: 2305–2313.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715–2730.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 2010; 107: 16759–16765.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Alsagabi M, Fan D, Bova GS, Tewfik AH, Dehm SM . Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res 2011; 71: 2108–2117.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu LL, Xie N, Sun S, Plymate S, Mostaghel E, Dong X . Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene (e-pub ahead of print 15 July 2013; doi: 10.1038/onc.2013.284).

    PubMed  PubMed Central  Google Scholar 

  75. Luo J, Pienta KJ . Words of wisdom: re: androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Eur Urol 2013; 64: 339–340.

    CAS  PubMed  Google Scholar 

  76. Plymate SR Luo J . The expression signature of androgen receptor splice variants and their distinctive transcriptional activities in castration-resistant prostate cancer. In: Zhou W (ed). Androgen-Responsive Genes in Prostate Cancer. Springer: New York, NY, USA, 2013.

    Google Scholar 

  77. Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012; 72: 3457–3462.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM . Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 2013; 73: 483–489.

    CAS  PubMed  Google Scholar 

  79. Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011; 17: 5913–5925.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z . The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res 2007; 67: 967–975.

    CAS  PubMed  Google Scholar 

  81. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19: 575–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu JD, Haugk K, Woodke L, Nelson P, Coleman I, Plymate SR . Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem 2006; 99: 392–401.

    CAS  PubMed  Google Scholar 

  83. Signoretti S, Montironi R, Manola J, Altimari A, Tam C, Bubley G et al. Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 2000; 92: 1918–1925.

    CAS  PubMed  Google Scholar 

  84. Di Lorenzo G, Tortora G, D'Armiento FP, De Rosa G, Staibano S, Autorino R et al. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 2002; 8: 3438–3444.

    CAS  PubMed  Google Scholar 

  85. Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer 2010; 102: 678–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S et al. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res 2011; 21: 47–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY et al. The genomic complexity of primary human prostate cancer. Nature 2011; 470: 214–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L et al. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 2013; 12: 2342–2355.

    CAS  PubMed  Google Scholar 

  90. Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM . Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120: 719–733.

    CAS  PubMed  Google Scholar 

  91. Jozwik KM, Carroll JS . Pioneer factors in hormone-dependent cancers. Nat Rev Cancer 2012; 12: 381–385.

    CAS  PubMed  Google Scholar 

  92. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44: 685–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci USA 2013; 110: 6997–7002.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Coffey K, Robson CN . Regulation of the androgen receptor by post-translational modifications. J Endocrinol 2012; 215: 221–237.

    CAS  PubMed  Google Scholar 

  95. Lamont KR, Tindall DJ . Minireview: Alternative activation pathways for the androgen receptor in prostate cancer. Mol Endocrinol 2011; 25: 897–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shu SK, Liu Q, Coppola D, Cheng JQ . Phosphorylation and activation of androgen receptor by Aurora-A. J Biol Chem 2010; 285: 33045–33053.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP . Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA 2006; 103: 15969–15974.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Willder JM, Heng SJ, McCall P, Adams CE, Tannahill C, Fyffe G et al. Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients. Br J Cancer 2013; 108: 139–148.

    CAS  PubMed  Google Scholar 

  99. Ha S, Iqbal NJ, Mita P, Ruoff R, Gerald WL, Lepor H et al. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene 2012; 32: 3992–4000.

    PubMed  PubMed Central  Google Scholar 

  100. Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 2006; 10: 309–319.

    CAS  PubMed  Google Scholar 

  101. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA 2007; 104: 8438–8443.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu Y, Karaca M, Zhang Z, Gioeli D, Earp HS, Whang YE . Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene 2010; 29: 3208–3216.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 123–134.

    CAS  PubMed  Google Scholar 

  104. Yap TA, Sandhu SK, Carden CP, de Bono JS . Poly(ADP-ribose) polymerase (PARP) inhibitors: Exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 2011; 61: 31–49.

    PubMed  Google Scholar 

  105. Sandhu SK, Omlin A, Hylands L, Miranda S, Barber LJ, Riisnaes R et al. Poly (ADP-ribose) polymerase (PARP) inhibitors for the treatment of advanced germline BRCA2 mutant prostate cancer. Ann Oncol 2013; 24: 1416–1418.

    CAS  PubMed  Google Scholar 

  106. Kraus WL . Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 2008; 20: 294–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2012; 2: 1134–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 2011; 19: 664–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Beltran H . DNA mismatch repair in prostate cancer. J Clin Oncol 2013; 31: 1782–1784.

    CAS  PubMed  Google Scholar 

  110. Montgomery B, Cheng HH, Drechsler J, Mostaghel EA . Glucocorticoids and prostate cancer treatment: friend or foe? Asian J Androl (e-pub ahead of print 7 March 2014; doi: 10.4103/1008-682X.125392).

    PubMed  PubMed Central  Google Scholar 

  111. Szmulewitz RZ, Chung E, Al-Ahmadie H, Daniel S, Kocherginsky M, Razmaria A et al. Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers. Prostate 2012; 72: 157–164.

    CAS  PubMed  Google Scholar 

  112. Sahu B, Laakso M, Pihlajamaa P, Ovaska K, Sinielnikov I, Hautaniemi S et al. FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res 2013; 73: 1570–1580.

    CAS  PubMed  Google Scholar 

  113. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013; 155: 1309–1322.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Brinkmann AO, Faber PW, van Rooij HC, Kuiper GG, Ris C, Klaassen P et al. The human androgen receptor: domain structure, genomic organization and regulation of expression. J Steroid Biochem 1989; 34: 307–310.

    CAS  PubMed  Google Scholar 

  115. Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D . Evolution of the nuclear receptor gene superfamily. EMBO J 1992; 11: 1003–1013.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Barrie SE, Potter GA, Goddard PM, Haynes BP, Dowsett M, Jarman M . Pharmacology of novel steroidal inhibitors of cytochrome P450(17) alpha (17 alpha-hydroxylase/C17-20 lyase). J Steroid Biochem Mol Biol 1994; 50: 267–273.

    CAS  PubMed  Google Scholar 

  117. Barrie SE, Haynes BP, Potter GA, Chan FC, Goddard PM, Dowsett M et al. Biochemistry and pharmacokinetics of potent non-steroidal cytochrome P450(17alpha) inhibitors. J Steroid Biochem Mol Biol 1997; 60: 347–351.

    CAS  PubMed  Google Scholar 

  118. Potter GA, Barrie SE, Jarman M, Rowlands MG . Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J Med Chem 1995; 38: 2463–2471.

    CAS  PubMed  Google Scholar 

  119. O'Donnell AI, Judson I, Dowsett M, Dowsett M, Raynaud F, Dearnaley D et al. Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer 2004; 90: 2317–2325.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ferraldeschi R, de Bono J . Agents that target androgen synthesis in castration-resistant prostate cancer. Cancer J 2013; 19: 34–42.

    CAS  PubMed  Google Scholar 

  121. Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 2008; 26: 4563–4571.

    CAS  PubMed  Google Scholar 

  122. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 2012; 13: 983–992.

    CAS  PubMed  Google Scholar 

  123. Logothetis CJ, Basch E, Molina A, Fizazi K, North SA, Chi KN et al. Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol 2012; 13: 1210–1217.

    CAS  PubMed  Google Scholar 

  124. Kaku T, Hitaka T, Ojida A, Matsunaga N, Adachi M, Tanaka T et al. Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorg Med Chem 2011; 19: 6383–6399.

    CAS  PubMed  Google Scholar 

  125. Handratta VD, Vasaitis TS, Njar VC, Gediya LK, Kataria R, Chopra P et al. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J Med Chem 2005; 48: 2972–2984.

    CAS  PubMed  Google Scholar 

  126. Eisner JR, Abbott DH, Bird IM, Rafferty SW, Moore MR, Schotzinger RJ . VT-464: A novel, selective inhibitor of P450c17(CYP17)-17,20 lyase for castration-refractory prostate cancer (CRPC). J Clin Oncol 2012; 30: (abstr e15167).

    Google Scholar 

  127. Kikuchi A, Enjo K, Furutani T, Azami H, Nimi T, Kuromitsu S et al. ASP9521, a novel, selective, orally bioavailable AKR1C3 (type 5, 17ß-hydroxysteroid dehydrogenase) inhibitor: In vitro and in vivo characterization. J Clin Oncol 31 2013 (suppl; abstr 5046).

  128. Loriot Y, Bianchini D, Ileana E, Sandhu S, Patrikidou A, Pezaro C et al. Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Ann Oncol 2013; 24: 1807–1812.

    CAS  PubMed  Google Scholar 

  129. Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT . Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci USA 2005; 102: 6201–6206.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jarman M, Barrie SE, Llera JM . The 16,17-double bond is needed for irreversible inhibition of human cytochrome p45017alpha by abiraterone (17-(3-pyridyl)androsta-5, 16-dien-3beta-ol) and related steroidal inhibitors. J Med Chem 1998; 41: 5375–5381.

    CAS  PubMed  Google Scholar 

  131. Osguthorpe DJ, Hagler AT . Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer. Biochemistry 2011; 50: 4105–4113.

    CAS  PubMed  Google Scholar 

  132. Kolvenbag GJ, Furr BJ, Blackledge GR . Receptor affinity and potency of non-steroidal antiandrogens: translation of preclinical findings into clinical activity. Prostate Cancer Prostatic Dis 1998; 1: 307–314.

    CAS  PubMed  Google Scholar 

  133. Simard J, Singh SM, Labrie F . Comparison of in vitro effects of the pure antiandrogens OH-flutamide, Casodex, and nilutamide on androgen-sensitive parameters. Urology 1997; 49: 580–586; discussion 586-589.

    CAS  PubMed  Google Scholar 

  134. Jung ME, Ouk S, Yoo D, Sawyers CL, Chen C, Tran C et al. Structure-activity relationship for thiohydantoin androgen receptor antagonists for castration-resistant prostate cancer (CRPC). J Med Chem 2010; 53: 2779–2796.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 2010; 375: 1437–1446.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Beer TM, Sternberg CN, Higano CS, Iversen P, Loriot Y, Rathkopf DE et al. Enzalutamide in men with chemotherapy-naive metastatic prostate cancer (mCRPC): Results of phase III PREVAIL study. J Clin Oncol 2014; 32 (suppl 4; abstr LBA1).

    Google Scholar 

  137. Clegg NJ, Wongvipat J, Joseph JD, Tran C, Ouk S, Dilhas A et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res 2012; 72: 1494–1503.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rathkopf DE, Morris MJ, Fox JJ, Danila DC, Slovin SF, Hager JH et al. Phase I study of ARN-509, a novel antiandrogen, in the treatment of castration-resistant prostate cancer. J Clin Oncol 2013; 31: 3525–3530.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Smith MR, Antonarakis ES, Ryan CJ, Berry W, Shore ND, Liu G et al. Arn-509 in Men with High Risk Non-Metastatic Castration-Resistant Prostate Cancer. Ann Oncol 2012; 23: 303–303.

    Google Scholar 

  140. Fizazi K, Massard C, James ND, Culine S, Jones RH, Oksala R et al. ODM-201, a new generation androgen receptor inhibitor for castration-resistant prostate cancer: preclinical and phase I data. J Clin Oncol 2013; 31 (Suppl 6; abstr 65).

    Google Scholar 

  141. Massard C, James N, Culine S, Jones R, Vuorela A, Mustonen M et al. ARADES trial: A first-in-man, open-label, phase I/II safety, pharmacokinetic, and proof-of-concept study ofODM-201 in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC). Presented at the 2012 ESMO Congress; Vienna, Austria Abstract LBA25_PR (2012).

  142. Lavery DN, McEwan J Functional characterization of the native NH2-terminal transactivation domain of the human androgen receptor: binding kinetics for interactions with TFIIF and SRC-1a. Biochemistry 2008; 47: 3352–3359.

    CAS  PubMed  Google Scholar 

  143. Lavery DN, McEwan IJ . Structural characterization of the native NH2-terminal transactivation domain of the human androgen receptor: a collapsed disordered conformation underlies structural plasticity and protein-induced folding. Biochemistry 2008; 47: 3360–3369.

    CAS  PubMed  Google Scholar 

  144. Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 2010; 17: 535–546.

    CAS  PubMed  Google Scholar 

  145. Zhang Y, Castaneda S, Dumble M, Wang M, Mileski M, Qu Z et al. Reduced expression of the androgen receptor by third generation of antisense shows antitumor activity in models of prostate cancer. Mol Cancer Ther 2011; 10: 2309–2319.

    CAS  PubMed  Google Scholar 

  146. Bianchini D, Omlin A, Pezaro C, Lorente D, Ferraldeschi R, Mukherji D et al. First-in-human Phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide to exon 4 of the androgen receptor mRNA in patients with castration-resistant prostate cancer. Br J Cancer 2013; 109: 2579–2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun 2013; 4: 1923.

    PubMed  Google Scholar 

  148. Pacey S, Wilson RH, Walton M, Eatock MM, Hardcastle A, Zetterlund A et al. A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin Cancer Res 2011; 17: 1561–1570.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Heath EI, Stein MN, Vaishampayan UN, Antonarakis ES, Liu G, Sheng S et al. Phase II trial of single-agent ganetespib (STA-9090), a heat shock protein 90 (Hsp90) inhibitor in heavily pretreated patients with metastatic castration-resistant prostate cancer (mCRPC) post docetaxel-based chemotherapy: Results of a Prostate Cancer Clinical Trials Consortium (PCCTC) study. J Clin Oncol 2013; 31 (suppl, abstr 5085).

  150. Gibbs A, Schwartzman J, Deng V, Alumkal J . Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci USA 2009; 106: 16663–16668.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 2013; 14: 882–892.

    CAS  PubMed  Google Scholar 

  152. Jiang X, Chen S, Asara JM, Balk SP . Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits. J Biol Chem 2010; 285: 14980–14989.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ni J, Liu Q, Xie S, Carlson C, Von T, Vogel K et al. Functional characterization of an isoform-selective inhibitor of PI3K-p110beta as a potential anticancer agent. Cancer Discov 2012; 2: 425–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhu Q, Youn H, Tang J, Tawfik O, Dennis K, Terranova PF et al. Phosphoinositide 3-OH kinase p85alpha and p110beta are essential for androgen receptor transactivation and tumor progression in prostate cancers. Oncogene 2008; 27: 4569–4579.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cariaga-Martinez AE, Lopez-Ruiz P, Nombela-Blanco MP, Motino O, Gonzalez-Corpas A, Rodriguez-Ubreva J et al. Distinct and specific roles of AKT1 and AKT2 in androgen-sensitive and androgen-independent prostate cancer cells. Cell Signal 2013; 25: 1586–1597.

    CAS  PubMed  Google Scholar 

  156. Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 2008; 68: 2366–2374.

    CAS  PubMed  Google Scholar 

  157. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol 2013; 31: 412–419.

    CAS  PubMed  Google Scholar 

  158. Michaelson MD, Oudard S, Ou YC, Sengelov L, Saad F, Houede N et al. Randomized, Placebo-Controlled, Phase III Trial of Sunitinib Plus Prednisone Versus Prednisone Alone in Progressive, Metastatic, Castration-Resistant Prostate Cancer. J Clin Oncol 2014; 32: 76–82.

    CAS  PubMed  Google Scholar 

  159. Araujo JC, Trudel GC, Saad F, Armstrong AJ, Yu EY, Bellmunt J et al. Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): a randomised, double-blind phase 3 trial. Lancet Oncol 2013; 14: 1307–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Yu EY, Wilding G, Posadas E, Gross M, Culine S, Massard C et al. Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res 2009; 15: 7421–7428.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Sonpavde G, Periman PO, Bernold D, Weckstein D, Fleming MT, Galsky MD et al. Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol 2010; 21: 319–324.

    CAS  PubMed  Google Scholar 

  162. Taplin ME, Montgomery RB, Logothetis C, Bubley GJ, Richie JP, Dalkin BL et al. Effect of neoadjuvant abiraterone acetate (AA) plus leuprolide acetate (LHRHa) on PSA, pathological complete response (pCR), and near pCR in localized high-risk prostate cancer (LHRPC): Results of a randomized phase II study. J Clin Oncol 2012; 30 (suppl; abstr 4521).

  163. Tombal B, Borre M, Rathenborg P, Werbrouck P, Poppel HV, Heidenreich A et al. Enzalutamide monotherapy: Extended follow-up of a phase II study in hormone-naive prostate cancer patients. J Clin Oncol 2014; 32 (suppl 4; abstr 62).

    Google Scholar 

  164. Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011; 71: 6503–6513.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu Z, Chen S, Sowalsky AG, Voznesensky O, Mostaghel EA, Nelson PS et al. Rapid Induction of Androgen Receptor Splice Variants by Androgen Deprivation in Prostate Cancer. Clin Cancer Res 2014; 20: 1590–1600.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Richards J, Lim AC, Hay CW, Taylor AE, Wingate A, Nowakowska K et al. Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res 2012; 72: 2176–2182.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990; 173: 534–540.

    CAS  PubMed  Google Scholar 

  168. Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000; 6: 703–706.

    CAS  PubMed  Google Scholar 

  169. Bianchini D, Lorente D, Rodriguez-Vida A, Omlin A, Pezaro C, Ferraldeschi R et al. Antitumour activity of enzalutamide (MDV3100) in patients with metastatic castration-resistant prostate cancer (CRPC) pre-treated with docetaxel and abiraterone. Eur J Cancer 2014; 50: 78–84.

    CAS  PubMed  Google Scholar 

  170. Schrader AJ, Boegemann M, Ohlmann CH, Schnoeller TJ, Krabbe LM, Hajili T et al. Enzalutamide in Castration-resistant Prostate Cancer Patients Progressing After Docetaxel and Abiraterone. Eur Urol 2013; 65: 30–36.

    PubMed  Google Scholar 

  171. Noonan KL, North S, Bitting RL, Armstrong AJ, Ellard SL, Chi KN . Clinical activity of abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after enzalutamide. Ann Oncol 2013; 24: 1802–1807.

    CAS  PubMed  Google Scholar 

  172. Mosquera JM1, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 2013; 15: 1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S de Bono.

Ethics declarations

Competing interests

Abiraterone acetate was developed at The Institute of Cancer Research (ICR), which therefore has a commercial interest in the development of this agent. JSdB received consulting fees from Ortho Biotech Oncology Research and Development (a unit of Cougar Biotechnology), consulting fees and travel support from Amgen, Astellas, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Dendreon, Enzon, Exelixis, Genentech, GlaxoSmithKline, Medivation, Merck, Novartis, Pfizer, Roche, Sanofi-Aventis, Supergen and Takeda, and grant support from AstraZeneca and Genentech. GA received consulting fees and travel support from Janssen-Cilag, Veridex, Roche/Ventana and Millennium Pharmaceuticals, lecture fees from Janssen-Cilag, Ipsen, Takeda and Sanofi-Aventis and grant support from AstraZeneca and Genentech. GA is on the ICR rewards to inventors list of abiraterone acetate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraldeschi, R., Welti, J., Luo, J. et al. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 34, 1745–1757 (2015). https://doi.org/10.1038/onc.2014.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.115

This article is cited by

Search

Quick links