Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

V-erbA generates ribosomes devoid of RPL11 and regulates translational activity in avian erythroid progenitors

Abstract

The v-erbA oncogene transforms chicken erythrocytic progenitors (T2EC) by blocking their differentiation and freezing them in a state of self-renewal. Transcriptomes of T2EC, expressing either v-erbA or a non-transforming form of v-erbA (S61G), were compared using serial analysis of gene expression and some, but not all, mRNA-encoding ribosomal proteins were seen to be affected by v-erbA. These results suggest that this oncogene could modulate the composition of ribosomes. In the present study, we demonstrate, using two-dimensional difference in gel electrophoresis, that v-erbA-expressing cells have a lower amount of RPL11 associated with the ribosomes. The presence of ribosomes devoid of RPL11 in v-erbA-expressing cells was further confirmed by immunoprecipitation. In order to assess the possible impact of these specialized ribosomes on the translational activity, we analyzed proteomes of either v-erbA or S61G-expressing cells using 2D/mass spectrometry, and identified nine proteins present in differing amounts within these cells. Among these proteins, we focused on HSP70 because of its involvement in erythroid differentiation. Our results indicate that, in v-erbA-expressing cells, hsp70 is not only transcribed but also translated more efficiently, as shown by polyribosome fractionation experiments. We demonstrate here, for the first time, the existence of ribosomes with different protein components, notably ribosomes devoid of RPL11, and a regulation of mRNA translation depending on v-erbA oncogene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Till JE, McCulloch EA . Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat Res 1963; 18: 96–105.

    Article  CAS  PubMed  Google Scholar 

  2. Watt FM, Hogan BL . Out of Eden: stem cells and their niches. Science 2000; 287: 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  3. Gandrillon O, Schmidt U, Beug H, Samarut J . TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. EMBO J 1999; 18: 2764–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bister K, Duesberg PH . Structure and specific sequences of avian erythroblastosis virus RNA: evidence for multiple classes of transforming genes among avian tumor viruses. Proc Natl Acad Sci USA 1979; 76: 5023–5027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Graf T, Beug H . Avian leukemia viruses: interaction with their target cells in vivo and in vitro. Biochim Biophys Acta 1978; 516: 269–299.

    CAS  PubMed  Google Scholar 

  6. Gandrillon O, Jurdic P, Benchaibi M, Xiao JH, Ghysdael J, Samarut J . Expression of the v-erbA oncogene in chicken embryo fibroblasts stimulates their proliferation in vitro and enhances tumor growth in vivo. Cell 1987; 49: 687–697.

    Article  CAS  PubMed  Google Scholar 

  7. Gandrillon O, Jurdic P, Pain B, Desbois C, Madjar JJ, Moscovici MG et al. Expression of the v-erbA product, an altered nuclear hormone receptor, is sufficient to transform erythrocytic cells in vitro. Cell 1989; 58: 115–121.

    Article  CAS  PubMed  Google Scholar 

  8. Gandrillon O, Ferrand N, Michaille JJ, Roze L, Zile MH, Samarut J . c-erbA alpha/T3R and RARs control commitment of hematopoietic self-renewing progenitor cells to apoptosis or differentiation and are antagonized by the v-erbA oncogene. Oncogene 1994; 9: 749–758.

    CAS  PubMed  Google Scholar 

  9. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 1986; 324: 635–640.

    Article  CAS  PubMed  Google Scholar 

  10. Yen PM, Ikeda M, Brubaker JH, Forgione M, Sugawara A, Chin WW . Roles of v-erbA homodimers and heterodimers in mediating dominant negative activity by v-erbA. J Biol Chem 1994; 269: 903–909.

    CAS  PubMed  Google Scholar 

  11. Damm K, Thompson CC, Evans RM . Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 1989; 339: 593–597.

    Article  CAS  PubMed  Google Scholar 

  12. Gandrillon O, Rascle A, Samarut J . The v-erbA oncogene - a superb tool for dissecting the involvement of nuclear hormone receptors in differentiation and neoplasia (review). Int J Oncol 1995; 6: 215–231.

    CAS  PubMed  Google Scholar 

  13. Bresson C, Keime C, Faure C, Letrillard Y, Barbado M, Sanfilippo S et al. Large-scale analysis by SAGE reveals new mechanisms of v-erbA oncogene action. BMC Genomics 2007; 8: 390.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bonamy GM, Guiochon-Mantel A, Allison LA . Cancer promoted by the oncoprotein v-erbA may be due to subcellular mislocalization of nuclear receptors. Mol Endocrinol 2005; 19: 1213–1230.

    Article  CAS  PubMed  Google Scholar 

  15. Gonin-Giraud S, Bresson-Mazet C, Gandrillon O . Involvement of the TGF-beta and mTOR/p70S6Kinase pathways in the transformation process induced by v-erbA. Leuk Res 2008; 32: 1878–1888.

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen-Lefebvre AT, Gonin-Giraud S, Scherl A, Arboit P, Granger L, Sanchez JC et al. Identification of human, rat and chicken ribosomal proteins by a combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. J Proteomics 2011; 74: 167–185.

    Article  CAS  PubMed  Google Scholar 

  17. Vandekerckhove J, Ribeil JA, Zermati Y, Garrido C, Courtois G, Solary E et al. Hsp 70, guardian angel of GATA-1 during erythroid differentiation. Med Sci (Paris) 2008; 24: 37–40.

    Article  Google Scholar 

  18. Gandrillon O, Kolesnik-Antoine D, Kupiec JJ, Beslon G . Chance at the heart of the cell. Prog Biophys Mol Biol 2012; 110: 1–4.

    Article  PubMed  Google Scholar 

  19. Kiparisov S, Petrov A, Meskauskas A, Sergiev PV, Dontsova OA, Dinman JD . Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274: 235–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Harnpicharnchai P, Jakovljevic J, Tang L, Guo Y, Oeffinger M et al. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev 2007; 21: 2580–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JW . The ribosome: structure, function, and evolution. American Society of Microbiology 1990; xxiii: 678.

  22. Zhang Q, Xiao H, Chai SC, Hoang QQ, Lu H . Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem 2011; 286: 38264–38274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Habif G, Grasset M, Kieffer-Jaquinod S, Kuhn L, Mouchiroud G, Gobert-Gosse S . Phosphoproteome analyses reveal specific implications of Hcls1, p21-activated kinase 1 and ezrin in proliferation of a myeloid progenitor cell line downstream of wild-type and ITD mutant Fms-like tyrosine kinase 3 receptors. J Proteomics 2013; 78: 231–244.

    Article  CAS  PubMed  Google Scholar 

  24. Dai MS, Arnold H, Sun XX, Sears R, Lu H . Inhibition of c-Myc activity by ribosomal protein L11. Embo J 2007; 26: 3332–3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Challagundla KB, Sun XX, Zhang X, DeVine T, Zhang Q, Sears RC et al. Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Mol Cell Biol 2011; 31: 4007–4021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rascle A, Gandrillon O, Cabello G, Samarut J . The v-erbA Oncogene. Birkhauser Publishing Ltd. Basel 1997; 1: 119–165.

    Google Scholar 

  27. Meyuhas O, Dreazen A . Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog Mol Biol Transl Sci 2009; 90: 109–153.

    Article  CAS  PubMed  Google Scholar 

  28. Jaattela M . Escaping cell death: survival proteins in cancer. Exp Cell Res 1999; 248: 30–43.

    Article  CAS  PubMed  Google Scholar 

  29. Reed JC . Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 1999; 11: 68–75.

    Article  CAS  PubMed  Google Scholar 

  30. Vargas-Roig LM, Fanelli MA, Lopez LA, Gago FE, Tello O, Aznar JC et al. Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 1997; 21: 441–451.

    CAS  PubMed  Google Scholar 

  31. Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR . Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 1998; 79: 468–475.

    Article  CAS  PubMed  Google Scholar 

  32. Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 2007; 445: 102–105.

    Article  CAS  PubMed  Google Scholar 

  33. Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ . GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 1999; 94: 87–96.

    CAS  PubMed  Google Scholar 

  34. Xue S, Barna M . Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012; 13: 355–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I . An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 2009; 33: 227–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komili S, Farny NG, Roth FP, Silver PA . Functional specificity among ribosomal proteins regulates gene expression. Cell 2007; 131: 557–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cardenas D, Revuelta-Cervantes J, Jimenez-Diaz A, Camargo H, Remacha M, Ballesta JP . P1 and P2 protein heterodimer binding to the P0 protein of Saccharomyces cerevisiae is relatively non-specific and a source of ribosomal heterogeneity. Nucleic Acids Res 2012; 40: 1–10.

    Article  Google Scholar 

  38. Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH et al. The ribosomal protein genes and minute loci of Drosophila melanogaster. Genome Biol 2007; 8: R216.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sugihara Y, Honda H, Iida T, Morinaga T, Hino S, Okajima T et al. Proteomic analysis of rodent ribosomes revealed heterogeneity including ribosomal proteins L10-like, L22-like 1, and L39-like. J Proteome Res 2009; 9: 1351–1366.

    Article  Google Scholar 

  40. Benchaibi M, Mallet F, Thoraval P, Savatier P, Xiao JH, Verdier G et al. Avian retroviral vectors derived from avian defective leukemia virus: role of the translational context of the inserted gene on efficiency of the vectors. Virology 1989; 169: 15–26.

    Article  CAS  PubMed  Google Scholar 

  41. Bonde BG, Sharif M, Privalsky ML . Ontogeny of the v-erbA oncoprotein from the thyroid hormone receptor: an alteration in the DNA binding domain plays a role crucial for v-erbA function. J Virol 1991; 65: 2037–2046.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharif M, Privalsky ML . V-erbA oncogene function in neoplasia correlates with its ability to repress retinoic acid receptor action. Cell 1991; 66: 885–893.

    Article  CAS  PubMed  Google Scholar 

  43. Waller JP, Harris JI . Studies on the composition of the protein from Escherichia coli ribosomes. Proc Natl Acad Sci USA 1961; 47: 18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Madjar JJ . Preparation of ribosomes and ribosomal proteins from cultured cells. In. Celis (ed), Cell Biology: A laboratory Handbook. (Academic Press, New York), 1994; 1: 657–661.

    Google Scholar 

  45. Wool IG . The structure and function of eukaryotic ribosomes. Annu Rev Biochem 1979; 48: 719–754.

    Article  CAS  PubMed  Google Scholar 

  46. Rabilloud T . Silver staining of 2-D electrophoresis gels. Methods Mol Biol 1999; 112: 297–305.

    CAS  PubMed  Google Scholar 

  47. Casabona MG, Silverman JM, Sall KM, Boyer F, Coute Y, Poirel J et al. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol 2013; 15: 471–486.

    Article  CAS  PubMed  Google Scholar 

  48. Greco A, Laurent AM, Madjar JJ . Repression of beta-actin synthesis and persistence of ribosomal protein synthesis after infection of HeLa cells by herpes simplex virus type 1 infection are under translational control. Mol Gen Genet 1997; 256: 320–327.

    Article  CAS  PubMed  Google Scholar 

  49. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Stephanie Gobert-Gosse (Universite Claude Bernard Lyon 1, Villeurbanne, France) for her expert advice on the two-dimensional electrophoresis experiments and Clément Soleilhavoup for his technical help in the analysis of total mRNA levels by RT–qPCR. This work received support from grants from Association pour la Recherche contre le Cancer, Ligue contre le Cancer (Comité Départemental du Rhône), Société Française d’Hématologie (SFH), Région Rhône-Alpes, Université Claude Bernard Lyon 1 (UCBL1) and Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gonin-Giraud.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Lefebvre, A., Leprun, G., Morin, V. et al. V-erbA generates ribosomes devoid of RPL11 and regulates translational activity in avian erythroid progenitors. Oncogene 33, 1581–1589 (2014). https://doi.org/10.1038/onc.2013.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.93

Keywords

Search

Quick links