Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-κB1 p50 promotes p53 protein translation through miR-190 downregulation of PHLPP1

Abstract

The biological function of NF-κB1 (p50) in the regulation of protein expression is far from well understood owing to the lack of a transcriptional domain. Here, we report a novel function of p50 in its regulation of p53 protein translation under stress conditions. We found that the deletion of p50 (p50−/−) impaired arsenite-induced p53 protein expression, which could be restored after reconstitutive expression of HA-p50 in p50−/− cells, p50−/−(Ad-HA-p50). Further studies indicated that the amounts of p53 mRNA, p53 promoter-driven transcription activity and p53 protein degradation were comparable between wild-type and p50−/− cells. Moreover, we found that p50 was crucial for Akt/S6 ribosomal protein activation via inhibition of the translation of the PH domain and leucine-rich repeat protein phosphatases 1 (PHLPP1), a phosphatase of Akt. Further studies showed that p50-mediated upregulation of miR-190 was responsible for the inhibition of PHLPP1 translation by targeting the 3′-untranslated region of its mRNA. Collectively, we have identified a novel function of p50 in modulating p53 protein translation via regulation of the miR-190/PHLPP1/Akt-S6 ribosomal protein pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fridman JS, Lowe SW . Control of apoptosis by p53. Oncogene 2003; 22: 9030–9040.

    Article  CAS  Google Scholar 

  2. Muller PA, Vousden KH, Norman JC . P53 and its mutants in tumor cell migration and invasion. J Cell Biol 2011; 192: 209–218.

    Article  CAS  Google Scholar 

  3. Teodoro JG, Parker AE, Zhu X, Green MR . P53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 2006; 313: 968–971.

    Article  CAS  Google Scholar 

  4. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM . Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992; 70: 937–948.

    Article  CAS  Google Scholar 

  5. Bode AM, Dong Z . Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4: 793–805.

    Article  CAS  Google Scholar 

  6. Bosari S, Viale G, Roncalli M, Graziani D, Borsani G, Lee AK et al. P53 gene mutations, p53 protein accumulation and compartmentalization in colorectal adenocarcinoma. Am J Pathol 1995; 147: 790–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Heinrichs S, Deppert W . Apoptosis or growth arrest: modulation of the cellular response to p53 by proliferative signals. Oncogene 2003; 22: 555–571.

    Article  CAS  Google Scholar 

  8. Ryan KM, Phillips AC, Vousden KH . Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 2001; 13: 332–337.

    Article  CAS  Google Scholar 

  9. Takagi M, Absalon MJ, McLure KG, Kastan MB . Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005; 123: 49–63.

    Article  CAS  Google Scholar 

  10. Gebel TW . Arsenic and drinking water contamination. Science 1999; 283: 1458–1459.

    Article  CAS  Google Scholar 

  11. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339: 1341–1348.

    Article  CAS  Google Scholar 

  12. Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010; 328: 240–243.

    Article  CAS  Google Scholar 

  13. Yih LH, Lee TC . Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res 2000; 60: 6346–6352.

    CAS  PubMed  Google Scholar 

  14. Lenardo MJ, Baltimore D . NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989; 58: 227–229.

    Article  CAS  Google Scholar 

  15. Yu Y, Wan Y, Huang C . The biological functions of NF-kappaB1 (p50) and its potential as an anti-cancer target. Curr Cancer Drug Targets 2009; 9: 566–571.

    Article  CAS  Google Scholar 

  16. Li Q, Verma IM . NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2: 725–734.

    Article  CAS  Google Scholar 

  17. Wang YJ, Wang JT, Fan QX, Geng JG . Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis. Cell Res 2007b; 17: 933–941.

    Article  CAS  Google Scholar 

  18. Song L, Li J, Zhang D, Liu ZG, Ye J, Zhan Q et al. IKKbeta programs to turn on the GADD45alpha-MKK4-JNK apoptotic cascade specifically via p50 NF-kappaB in arsenite response. J Cell Biol 2006; 175: 607–617.

    Article  CAS  Google Scholar 

  19. Maillet A, Pervaiz S . Redox regulation of p53, redox effectors regulated by p53: a subtle balance. Antioxid Redox Signal 2012; 16: 1285–1294.

    Article  CAS  Google Scholar 

  20. Xu Y . Regulation of p53 responses by post-translational modifications. Cell Death Differ 2003; 10: 400–403.

    Article  CAS  Google Scholar 

  21. Fiaschi T, Chiarugi P . Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012; 2012: 8.

    Article  Google Scholar 

  22. Bellodi C, Kopmar N, Ruggero D . Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 2010; 29: 1865–1876.

    Article  CAS  Google Scholar 

  23. Karawajew L, Rhein P, Czerwony G, Ludwig W-D . Stress-induced activation of the p53 tumor suppressor in leukemia cells and normal lymphocytes requires mitochondrial activity and reactive oxygen species. Blood 2005; 105: 4767–4775.

    Article  CAS  Google Scholar 

  24. Ljungman M . Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2000; 2: 208–225.

    Article  CAS  Google Scholar 

  25. Stahnke K, Fulda S, Friesen C, Strauß G, Debatin K-M . Activation of apoptosis pathways in peripheral blood lymphocytes by in vivo chemotherapy. Blood 2001; 98: 3066–3073.

    Article  CAS  Google Scholar 

  26. Yang DQ, Halaby MJ, Zhang Y . The identification of an internal ribosomal entry site in the 5[prime]-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 2006; 25: 4613–4619.

    Article  CAS  Google Scholar 

  27. Peterson RT, Schreiber SL . Translation control: connecting mitogens and the ribosome. Curr Biol 1998; 8: R248–R250.

    Article  CAS  Google Scholar 

  28. Hutchinson JA, Shanware NP, Chang H, Tibbetts RS . Regulation of ribosomal protein S6 phosphorylation by casein kinase 1 and protein phosphatase 1. J Biol Chem 2011; 286: 8688–8696.

    Article  CAS  Google Scholar 

  29. Guo W, Yang Z, Xia Q, Liu J, Yu Y, Li J et al. Arsenite stabilizes HIF-1alpha protein through p85alpha-mediated up-regulation of inducible Hsp70 protein expression. Cell Mol Life Sci 2011; 68: 475–488.

    Article  CAS  Google Scholar 

  30. Torres J, Pulido R . The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 2001; 276: 993–998.

    Article  CAS  Google Scholar 

  31. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000; 20: 5010–5018.

    Article  CAS  Google Scholar 

  32. Gao T, Furnari F, Newton AC . PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18: 13–24.

    Article  CAS  Google Scholar 

  33. Quinn JE, Kennedy RD, Mullan PB, Gilmore PM, Carty M, Johnston PG et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 2003; 63: 6221–6228.

    CAS  PubMed  Google Scholar 

  34. Hellen CUT, Sarnow P . Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 2001; 15: 1593–1612.

    Article  CAS  Google Scholar 

  35. Rossman TG, Klein CB . Genetic and epigenetic effects of environmental arsenicals. Metallomics 2011; 3: 1135–1141.

    Article  CAS  Google Scholar 

  36. Li J, Tang M-s, Liu B, Shi X, Huang C . A critical role of PI-3K//Akt//JNKs pathway in benzo[lsqb]a[rsqb]pyrene diol-epoxide (B[lsqb]a[rsqb]PDE)-induced AP-1 transactivation in mouse epidermal Cl41 cells. Oncogene 2004; 23: 3932–3944.

    Article  CAS  Google Scholar 

  37. Chen K, Rajewsky N . The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8: 93–103.

    Article  CAS  Google Scholar 

  38. Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X et al. miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 2011; 123: 411–420.

    Article  CAS  Google Scholar 

  39. Chen A, Cao EH, Zhang TC, Qin JF . Arsenite-induced reactive oxygen species and the repression of alpha-tocopherol in the MGC-803 cells. Eur J Pharmacol 2002; 448: 11–18.

    Article  CAS  Google Scholar 

  40. Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002; 277: 21843–21850.

    Article  CAS  Google Scholar 

  41. Xu D, Wilson TJ, Chan D, De Luca E, Zhou J, Hertzog PJ et al. Ets1 is required for p53 transcriptional activity in UV-induced apoptosis in embryonic stem cells. EMBO J 2002; 21: 4081–4093.

    Article  CAS  Google Scholar 

  42. Yan W, Zhang Y, Zhang J, Liu S, Cho SJ, Chen X . Mutant p53 protein is targeted by arsenic for degradation and plays a role in arsenic-mediated growth suppression. J Biol Chem 2011; 286: 17478–17486.

    Article  CAS  Google Scholar 

  43. Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G . Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 2002; 512: 334–340.

    Article  CAS  Google Scholar 

  44. Schuler M, Maurer U, Goldstein JC, Breitenbucher F, Hoffarth S, Waterhouse NJ et al. P53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ 2003; 10: 451–460.

    Article  CAS  Google Scholar 

  45. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L . PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 2003; 100: 1931–1936.

    Article  CAS  Google Scholar 

  46. El-Deiry WS . The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003; 22: 7486–7495.

    Article  CAS  Google Scholar 

  47. Hinata N, Shirakawa T, Zhang Z, Matsumoto A, Fujisawa M, Okada H et al. Radiation induces p53-dependent cell apoptosis in bladder cancer cells with wild-type-p53 but not in p53-mutated bladder cancer cells. Urol Res 2003; 31: 387–396.

    Article  CAS  Google Scholar 

  48. Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T . Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 2009; 28: 994–1004.

    Article  CAS  Google Scholar 

  49. Ying SY, Lin SL . Intron-derived microRNAs—fine tuning of gene functions. Gene 2004; 342: 25–28.

    Article  CAS  Google Scholar 

  50. Zheng H, Chu J, Zeng Y, Loh HH, Law PY . Yin Yang 1 phosphorylation contributes to the differential effects of mu-opioid receptor agonists on microRNA-190 expression. J Biol Chem 2010; 285: 21994–22002.

    Article  CAS  Google Scholar 

  51. Wang H, Hertlein E, Bakkar N, Sun H, Acharyya S, Wang J et al. NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol Cell Biol 2007a; 27: 4374–4387.

    Article  CAS  Google Scholar 

  52. Bellacosa A, Chan OT, Ahmed NN, Datta K, Malstrom S, Stokoe D et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 1998; 17: 313–325.

    Article  CAS  Google Scholar 

  53. Jiang B-H, Aoki M, Zheng JZ, Li J, Vogt PK . Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci 1999; 96: 2077–2081.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Nedda Tichi and Mr Andy Hu for their critical reading of this manuscript. We thank Dr Ping-Yee Law (Department of Pharmacology, University of Minnesota) for providing us with constructs of miR-190 and its control. We also thank Dr Fei Chen (Department of Pharmaceutical Sciences, Wayne State University) for providing us with the PHLPP1 3′-UTR luciferase reporter. This work was partially supported by grants from NSFC81229002, NIH/NCI CA112557, NBRPC2012CB525004 and NIH/NIEHS ES000260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Zhang, D., Huang, H. et al. NF-κB1 p50 promotes p53 protein translation through miR-190 downregulation of PHLPP1. Oncogene 33, 996–1005 (2014). https://doi.org/10.1038/onc.2013.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.8

Keywords

This article is cited by

Search

Quick links