Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

15-PGDH inhibits hepatocellular carcinoma growth through 15-keto-PGE2/PPARγ-mediated activation of p21WAF1/Cip1

A Corrigendum to this article was published on 09 October 2014

Abstract

15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is a key enzyme in prostaglandin (PG) metabolism. This study provides important evidence for inhibition of hepatocellular carcinoma (HCC) growth by 15-PGDH through the 15-keto-prostaglandin E2 (15-keto-PGE2)/peroxisome proliferator-activated receptor-γ (PPARγ)/p21WAF1/Cip1 signaling pathway. Forced overexpression of 15-PGDH inhibited HCC cell growth in vitro, whereas knockdown of 15-PGDH enhanced tumor growth parameters. In a tumor xenograft model in severe combined immunodeficiency mice, inoculation of human HCC cells (Huh7) with overexpression of 15-PGDH led to significant inhibition of tumor growth, whereas knockdown of 15-PGDH enhanced tumor growth. In a separate tumor xenograft model in which mouse HCC cells (Hepa1-6) were inoculated into syngeneic C57BL/6 mice, intratumoral injection of adenovirus vector expressing 15-PGDH (pAd-15-PGDH) significantly inhibited xenograft tumor growth. The antitumor effect of 15-PGDH is mediated through its enzymatic product, 15-keto-PGE2, which serves as an endogenous PPARγ ligand. Activation of PPARγ by 15-PGDH-derived 15-keto-PGE2 enhanced the association of PPARγ with the p21WAF1/Cip1 promoter and increased p21 expression and association with cyclin-dependent kinase 2 (CDK2), CDK4 and proliferating cell nuclear antigen. Depletion of p21 by short hairpin RNA reversed 15-PGDH-induced inhibition of HCC cell growth; overexpression of p21 prevented 15-PGDH knockdown-induced tumor cell growth. These results show a key 15-PGDH/15-keto-PGE2-mediated activation of PPARγ and p21WAF1/Cip1 signaling cascade that regulates hepatocarcinogenesis and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

15-PGDH:

15-hydroxyprostaglandin dehydrogenase

15-keto-PGE2:

15-keto-prostaglandin E2

CDK:

cyclin-dependent kinase

COX-2:

cyclooxygenase-2

HCC:

hepatocellular carcinoma

IP:

immunoprecipitation

PCNA:

proliferating cell nuclear antigen

PGE2:

prostaglandin E2

PGR:

15-oxoprostaglandin-Δ13-reductase

PPARγ:

peroxisome proliferator-activated receptor-γ

PPRE:

peroxisome proliferator response element

SCID:

severe combined immunodeficiency

References

  1. El-Serag HB . Hepatocellular carcinoma. N Engl J Med 2011; 365: 1118–1127.

    Article  CAS  Google Scholar 

  2. El-Serag HB . Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012; 142: 1264–73 e1.

    Article  Google Scholar 

  3. Farazi PA, DePinho RA . Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674–687.

    Article  CAS  Google Scholar 

  4. Llovet JM, Bruix J . Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48: 1312–1327.

    Article  CAS  Google Scholar 

  5. Wu T . Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat Rev 2006; 32: 28–44.

    Article  CAS  Google Scholar 

  6. Breinig M, Schirmacher P, Kern MA . Cyclooxygenase-2 (COX-2)—a therapeutic target in liver cancer? Curr Pharm Des 2007; 13: 3305–3315.

    Article  CAS  Google Scholar 

  7. Cervello M, Montalto G . Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol 2006; 12: 5113–5121.

    Article  CAS  Google Scholar 

  8. Claria J, Kent JD, Lopez-Parra M, Escolar G, Ruiz-Del-Arbol L, Gines P et al. Effects of celecoxib and naproxen on renal function in nonazotemic patients with cirrhosis and ascites. Hepatology 2005; 41: 579–587.

    Article  CAS  Google Scholar 

  9. Bosch-Marce M, Claria J, Titos E, Masferrer JL, Altuna R, Poo JL et al. Selective inhibition of cyclooxygenase 2 spares renal function and prostaglandin synthesis in cirrhotic rats with ascites. Gastroenterology 1999; 116: 1167–1175.

    Article  CAS  Google Scholar 

  10. Vanchieri C . Vioxx withdrawal alarms cancer prevention researchers. J Natl Cancer Inst 2004; 96: 1734–1735.

    Article  Google Scholar 

  11. Couzin J . Clinical trials. Nail-biting time for trials of COX-2 drugs. Science 2004; 306: 1673–1675.

    Article  CAS  Google Scholar 

  12. Grosser T, Fries S, FitzGerald GA . Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 2006; 116: 4–15.

    Article  CAS  Google Scholar 

  13. Baron JA, Sandler RS, Bresalier RS, Quan H, Riddell R, Lanas A et al. A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 2006; 131: 1674–1682.

    Article  CAS  Google Scholar 

  14. Tai HH . Prostaglandin catabolic enzymes as tumor suppressors. Cancer Metastasis Rev 2011; 30: 409–417.

    Article  CAS  Google Scholar 

  15. Kaliberova LN, Kusmartsev SA, Krendelchtchikova V, Stockard CR, Grizzle WE, Buchsbaum DJ et al. Experimental cancer therapy using restoration of NAD+ -linked 15-hydroxyprostaglandin dehydrogenase expression. Mol Cancer Ther 2009; 8: 3130–3139.

    Article  CAS  Google Scholar 

  16. Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 2006; 103: 12098–12102.

    Article  CAS  Google Scholar 

  17. Yan M, Myung SJ, Fink SP, Lawrence E, Lutterbaugh J, Yang P et al. 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proc Natl Acad Sci USA 2009; 106: 9409–9413.

    Article  CAS  Google Scholar 

  18. Tseng-Rogenski S, Gee J, Ignatoski KW, Kunju LP, Bucheit A, Kintner HJ et al. Loss of 15-hydroxyprostaglandin dehydrogenase expression contributes to bladder cancer progression. Am J Pathol 2010; 176: 1462–1468.

    Article  CAS  Google Scholar 

  19. Liu Z, Wang X, Lu Y, Han S, Zhang F, Zhai H et al. Expression of 15-PGDH is downregulated by COX-2 in gastric cancer. Carcinogenesis 2008; 29: 1219–1227.

    Article  CAS  Google Scholar 

  20. Frank B, Hoeft B, Hoffmeister M, Linseisen J, Breitling LP, Chang-Claude J et al. Association of hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD) variants and colorectal cancer risk. Carcinogenesis 2011; 32: 190–196.

    Article  CAS  Google Scholar 

  21. Wolf I, O'Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT et al. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res 2006; 66: 7818–7823.

    Article  CAS  Google Scholar 

  22. Huang G, Eisenberg R, Yan M, Monti S, Lawrence E, Fu P et al. 15-Hydroxyprostaglandin dehydrogenase is a target of hepatocyte nuclear factor 3beta and a tumor suppressor in lung cancer. Cancer Res 2008; 68: 5040–5048.

    Article  CAS  Google Scholar 

  23. Ding Y, Tong M, Liu S, Moscow JA, Tai HH . NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis 2005; 26: 65–72.

    Article  CAS  Google Scholar 

  24. Chou WL, Chuang LM, Chou CC, Wang AH, Lawson JA, FitzGerald GA et al. Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J Biol Chem 2007; 282: 18162–18172.

    Article  CAS  Google Scholar 

  25. Backlund MG, Mann JR, Holla VR, Buchanan FG, Tai HH, Musiek ES et al. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem 2005; 280: 3217–3223.

    Article  CAS  Google Scholar 

  26. Backlund MG, Mann JR, Holla VR, Shi Q, Daikoku T, Dey SK et al. Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Res 2008; 68: 9331–9337.

    Article  CAS  Google Scholar 

  27. Tatsuwaki H, Tanigawa T, Watanabe T, Machida H, Okazaki H, Yamagami H et al. Reduction of 15-hydroxyprostaglandin dehydrogenase expression is an independent predictor of poor survival associated with enhanced cell proliferation in gastric adenocarcinoma. Cancer Sci 2010; 101: 550–558.

    Article  CAS  Google Scholar 

  28. Wakimoto N, Wolf I, Yin D, O'Kelly J, Akagi T, Abramovitz L et al. Nonsteroidal anti-inflammatory drugs suppress glioma via 15-hydroxyprostaglandin dehydrogenase. Cancer Res 2008; 68: 6978–6986.

    Article  CAS  Google Scholar 

  29. Thiel A, Ganesan A, Mrena J, Junnila S, Nykanen A, Hemmes A et al. 15-hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clin Cancer Res 2009; 15: 4572–4580.

    Article  CAS  Google Scholar 

  30. Eruslanov E, Kaliberov S, Daurkin I, Kaliberova L, Buchsbaum D, Vieweg J et al. Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 2009; 182: 7548–7557.

    Article  CAS  Google Scholar 

  31. Moore AE, Greenhough A, Roberts HR, Hicks DJ, Patsos HA, Williams AC et al. HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis 2009; 30: 1796–1804.

    Article  CAS  Google Scholar 

  32. Tong M, Ding Y, Tai HH . Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis 2006; 27: 2170–2179.

    Article  CAS  Google Scholar 

  33. Lim K, Han C, Xu L, Isse K, Demetris AJ, Wu T . Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res 2008; 68: 553–560.

    Article  CAS  Google Scholar 

  34. Lim K, Han C, Dai Y, Shen M, Wu T . Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Mol Cancer Ther 2009; 8: 3046–3055.

    Article  CAS  Google Scholar 

  35. Yang L, Amann JM, Kikuchi T, Porta R, Guix M, Gonzalez A et al. Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Res 2007; 67: 5587–5593.

    Article  CAS  Google Scholar 

  36. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    Article  CAS  Google Scholar 

  37. Starostina NG, Kipreos ET . Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol 2012; 22: 33–41.

    Article  CAS  Google Scholar 

  38. Jung YS, Qian Y, Chen X . Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22: 1003–1012.

    Article  CAS  Google Scholar 

  39. Dotto GP . p21WAF1/CIP1: more than a break to the cell cycle? Biochemica Et Biophysica Acta 2000; 1471: M43–M56.

    CAS  Google Scholar 

  40. Rousseau D, Cannella D, Boulairs J, Fitzgerald P, Fotedar A, Fotedar R . Growth inhibition of CDK-cyclin and PCNA binding domains by p21 occurs by distinct mechanisms and is regulated by ubiquitinproteasome pathways. Oncogene 1999; 18: 4313.

    Article  CAS  Google Scholar 

  41. Chen J, Jackson PK, Kirschner MW, Dutta A . Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 1995; 374: 386–388.

    Article  CAS  Google Scholar 

  42. Luo Y, Hurwitz J, Massague J . Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 1995; 375: 159–161.

    Article  CAS  Google Scholar 

  43. Kawai M, Rosen CJ . PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol 2010; 6: 629–636.

    Article  CAS  Google Scholar 

  44. Tontonoz P, Spiegelman BM . Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289–312.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Hsin-Hsiung Tai at the University of Kentucky for providing the 15-PGDH-adenoviral vector. This work was supported by National Institutes of Health grants CA102325, CA106280, CA134568 and DK077776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, D., Han, C. & Wu, T. 15-PGDH inhibits hepatocellular carcinoma growth through 15-keto-PGE2/PPARγ-mediated activation of p21WAF1/Cip1. Oncogene 33, 1101–1112 (2014). https://doi.org/10.1038/onc.2013.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.69

Keywords

This article is cited by

Search

Quick links