Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alternative lengthening of telomeres in cancer stem cells in vivo

Abstract

Chromosome ends are protected by telomeres that prevent DNA damage response and degradation. Telomerase expression extends telomeres and inhibits DNA damage response. Telomeres are also maintained by the recombination-based alternative lengthening pathway. Telomerase is believed to be the sole mechanism for telomere maintenance in the epidermis. We show that basal cells in the epidermis maintain telomeres both by telomerase and alternative lengthening of telomere (ALT) mechanisms in vivo. ALT was detected in epidermal stem cells in Terc−/− mice, and normal human epidermal keratinocytes are also ALT-positive. The ALT pathway is suppressed in primary, but not metastatic, epidermal squamous cell carcinomas (SCC) in Terc+/+ mice. The ALT pathway is expressed in stem cells and basal cells in epidermal SCC in Terc−/− mice, and in some telomerase-positive human SCC lines. Telomeres shorten markedly in stem cells and basal cells in epidermal SCC in vivo. Telomere shortening is associated with telomeric DNA damage response and apoptosis in stem cells and basal cells. Stem cells were transformed in both primary and metastatic epidermal SCC. Genetic ablation of this small cell population resulted in significant tumor regression in vivo. We concluded that alternative lengthening of telomeres is important in epidermal homeostasis and tumorigenesis in vivo.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Palm W, de Lange T . How shelterin protects mammalian telomeres. Ann Rev Genet 2008; 42: 301–334.

    CAS  Article  Google Scholar 

  2. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97: 503–514.

    CAS  Article  Google Scholar 

  3. Hemann MT, Greider CW . G strand overhangs on telomeres in telomerase deficient mouse cells. Nuc Acids Res 1999; 27: 3964–3969.

    CAS  Article  Google Scholar 

  4. Martinez P, Blasco MA . Role of shelterin in cancer and aging. Aging Cell 2010; 9: 653–666.

    CAS  Article  Google Scholar 

  5. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB et al. Telomere shortening associate with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11: 1921–1929.

    CAS  Article  Google Scholar 

  6. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91: 25–34.

    CAS  Article  Google Scholar 

  7. Rajaraman S, Choi J, Cheung P, Beaudry V, Moore H, Artandi SE . Telomere uncapping in progenitor cells with critical telomere shortening is coupled to S phase progression in vivo. Proc Natl Acad Sci USA 2007; 104: 17747–17752.

    CAS  Article  Google Scholar 

  8. Belair CD, Yeager TR, Lopez PM, Reznikoff CA . Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proc Natl Acad Sci USA 1997; 94: 13677–13682.

    CAS  Article  Google Scholar 

  9. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of lifespan by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    CAS  Article  Google Scholar 

  10. Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, Lansdorp PM et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 1998; 95: 14723–14728.

    CAS  Article  Google Scholar 

  11. Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 1997; 11: 3109–3115.

    CAS  Article  Google Scholar 

  12. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al. hEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell 1997; 90: 785–795.

    CAS  Article  Google Scholar 

  13. Ramakrishnan S, Eppendberger U, Mueller H, Shinkai Y, Narayanan R . Expression profile of the putative catalytic subunit of the telomerase gene. Cancer Res 1998; 58: 622–625.

    CAS  PubMed  Google Scholar 

  14. Henderson S, Allsopp R, Spector D, Wang SS, Harley C . In situ analysis of changes in telomere size during replicative aging and cell transformation. J Cell Biol 1996; 134: 1–12.

    CAS  Article  Google Scholar 

  15. Wu G, Jiang X, Lee WH, Chen PL . Assembly of functional ALT associated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1. Cancer Res 2003; 63: 2589–2595.

    CAS  PubMed  Google Scholar 

  16. Nabetani A, Ishikawa F . Unusual telomeric DNAs in human telomerase negative immortalized cells. Mol Cell Biol 2009; 29: 703–713.

    CAS  Article  Google Scholar 

  17. Rossi DJ, Jamieson CHM, Weissman IL . Stem cells and the pathways to aging and cancer. Cell 2008; 132: 681–696.

    CAS  Article  Google Scholar 

  18. Fuchs E . The tortoise and the hair: slow cycling cells in the stem cell race. Cell 2009; 137: 811–819.

    CAS  Article  Google Scholar 

  19. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA . The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 2008; 22: 654–667.

    CAS  Article  Google Scholar 

  20. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 22: 411–417.

    CAS  Article  Google Scholar 

  21. Fuchs E . Scratching the surface of skin development. Nature 2007; 445: 834–842.

    CAS  Article  Google Scholar 

  22. Liu Y, Lyle S, Yang Z, Cotsarelis G . Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol 2003; 121: 963–968.

    CAS  Article  Google Scholar 

  23. Cotsarelis G . Epithelial stem cells: a folliculocentric view. J Invest Dermatol 2006; 126: 1459–1468.

    CAS  Article  Google Scholar 

  24. Fuchs E . Skin stem cells: rising to the surface. J Cell Biol 2008; 180: 273–284.

    CAS  Article  Google Scholar 

  25. Flores I, Cayuela ML, Blasco MA . Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005; 309: 1253–1256.

    CAS  Article  Google Scholar 

  26. Sarin KY, Cheung P, Gilison D, Lee E, Tennen RI, Wang E et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005; 436: 1048–1052.

    CAS  Article  Google Scholar 

  27. Siegl-Cachedenier I, Flores I, Klatt P, Blasco MA . Telomerase reverses epidermal hair follicle stem cell defects and loss of long term survival associated with critically short telomeres. J Cell Biol 2007; 179: 277–290.

    CAS  Article  Google Scholar 

  28. Harle-Bachor C, Boukamp P . Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma derived skin keratinocytes. Proc Natl Acad Sci USA 1996; 93: 6476–6481.

    CAS  Article  Google Scholar 

  29. Gonzalez-Suarez E, Samper E, Ramirez A, Flores JM, Martin-Caballero J, Jorcano JL et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase mTERT in basal keratinocytes. EMBO J 2001; 20: 2619–2630.

    CAS  Article  Google Scholar 

  30. Crowe DL, Nguyen DC, Tsang KJ, Kyo S . E2F-1 represses transcription of the human telomerase reverse transcriptase gene. Nuc Acids Res 2001; 29: 2789–2794.

    CAS  Article  Google Scholar 

  31. Kang MK, Guo W, Park NH . Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Cell Growth Diff 1998; 9: 85–95.

    CAS  PubMed  Google Scholar 

  32. Kang MK, Kameta A, Shin KH, Baluda MA, Park NH . Senescence occurs with hTERT repression and limited telomere shortening in human oral keratinocytes cultured with feeder cells. J Cell Physiol 2004; 199: 364–370.

    CAS  Article  Google Scholar 

  33. Grobelny JV, Kulp-McEliece M, Broccoli D . Effects of reconstitution of telomerase activity on telomere maintenance by the alternative lengthening of telomeres (ALT) pathway. Hum Mol Genet 2001; 10: 1953–1961.

    CAS  Article  Google Scholar 

  34. Ford LP, Zou Y, Pongracz K, Gryaznov SM, Shay JW, Wright WE . Telomerase can inhibit the recombination based pathway of telomere maintenance in human cells. J Biol Chem 2001; 276: 32198–32203.

    CAS  Article  Google Scholar 

  35. Henson JD, Reddel RR . Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett 2010; 584: 3800–3811.

    CAS  Article  Google Scholar 

  36. Heaphy CM, Subhawong AP, Hong SM, Goggins MG, Montgomery EA, Gabrielson E et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 2011; 179: 1608–1615.

    CAS  Article  Google Scholar 

  37. Wu Y, Zacal NJ, Rainbow AJ, Zhu XD . XPF with mutations in its conserved nuclease domain is defective in DNA repair but functions in TRF2 mediated telomere shortening. DNA Repair 2007; 6: 157–166.

    CAS  Article  Google Scholar 

  38. van Steensel B, Smogorzewska A, de Lange T . TRF2 protects human telomeres from end to end fusions. Cell 1998; 92: 401–413.

    CAS  Article  Google Scholar 

  39. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signaling. Nature 2008; 452: 650–653.

    CAS  Article  Google Scholar 

  40. Callicott RJ, Womack JE . Real time PCR assay for measurement of mouse telomeres. Comp Med 2006; 56: 17–22.

    CAS  PubMed  Google Scholar 

  41. Henson JD, Cao Y, Huschtscha LI, Chang AC, Au AYM, Pickett HA et al. DNA C circles are specific and quantifiable markers of alternative lengthening of telomeres activity. Nat Biotechnol 2009; 27: 1181–1186.

    CAS  Article  Google Scholar 

  42. Celli GB, Lazzerini Denchi E, de Lange T . Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 2006; 8: 885–890.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Chiayeng Wang (University of Illinois, Chicago, IL, USA) for U2OS cells. This research was supported by National Institutes of Health grant DE14283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Crowe.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bojovic, B., Booth, R., Jin, Y. et al. Alternative lengthening of telomeres in cancer stem cells in vivo. Oncogene 34, 611–620 (2015). https://doi.org/10.1038/onc.2013.603

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.603

Keywords

  • DNA damage
  • metastasis
  • squamous cell carcinoma
  • basal cells
  • keratin 15

Further reading

Search

Quick links