Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Juvenile myelomonocytic leukaemia-associated mutation in Cbl promotes resistance to apoptosis via the Lyn-PI3K/AKT pathway


Juvenile myelomonocytic leukaemia (JMML) is an aggressive myeloproliferative neoplasm in children characterized by granulocyte macrophage colony-stimulating factor (GM-CSF) hypersensitivity and resistance to chemotherapy. We recently identified c-Cbl (henceforth referred to as Cbl) as a GM-CSF receptor (GMR) responsive protein that targets Src for ubiquitin-mediated destruction upon GM-CSF stimulation and showed that a loss of negative regulation of Src is pivotal in the hyperactivation of GMR signalling in JMML cells. However, the mechanism regulating the chemoresistant nature of JMML has remained largely unknown. Here, we show that the JMML-associated Cbl mutant in complex with the Src family kinase Lyn promotes Cbl’s adapter function, leading to increased association to PI3K regulatory subunit p85 and Lyn-dependent AKT pro-survival signalling. Notably, molecular or pharmacologic inhibition of the Lyn-PI3K/AKT pathway, but not the Ras/mitogen-activated protein kinase signalling axis, markedly increased the sensitivity of the otherwise chemoresistant Cbl mutant-JMML cells to chemotherapeutic agents currently used in the treatment of JMML patients. These results support the potential translational benefit of combining modalities that inhibit Lyn-PI3K/AKT signalling with traditional antileukaemia agents in the management of JMML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others


  1. Chan HS, Estrov Z, Weitzman SS, Freedman MH . The value of intensive combination chemotherapy for juvenile chronic myelogenous leukemia. J Clin Oncol 1987; 5: 1960–1967.

    Article  CAS  PubMed  Google Scholar 

  2. Hasle H, Kerndrup G, Yssing M, Clausen N, Ostergaard E, Jacobsen N et al. Intensive chemotherapy in childhood myelodysplastic syndrome. A comparison with results in acute myeloid leukemia. Leukemia 1996; 10: 1269–1273.

    CAS  PubMed  Google Scholar 

  3. Loh ML . Childhood myelodysplastic syndrome: focus on the approach to diagnosis and treatment of juvenile myelomonocytic leukemia. Hematology 2010; 2010: 357–362.

    Article  PubMed  Google Scholar 

  4. Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010; 42: 794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 2009; 460: 904–908.

    Article  CAS  PubMed  Google Scholar 

  6. Emanuel PD, Bates LJ, Castleberry RP, Gualtieri RJ, Zuckerman KS . Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991; 77: 925–929.

    CAS  PubMed  Google Scholar 

  7. Zhou ZR, Gao HC, Zhou CJ, Chang YG, Hong J, Song AX et al. Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b: NMR structural and biochemical insights. Protein Sci 2008; 17: 1805–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001; 276: 35185–35193.

    Article  CAS  PubMed  Google Scholar 

  9. Bunda S, Kang MW, Sybingco SS, Weng J, Favre H, Shin DH et al. Inhibition of Src corrects Gm-Csf hypersensitivity that underlies juvenile myelomonocytic leukaemia. Cancer Res 2013; 73: 2540–2550.

    Article  CAS  PubMed  Google Scholar 

  10. Emanuel PD . RAS pathway mutations in juvenile myelomonocytic leukemia. Acta Haematol-Basel 2008; 119: 207–211.

    Article  CAS  Google Scholar 

  11. Beckwith M, Jorgensen G, Longo DL . The protein product of the proto-oncogene c-cbl forms a complex with phosphatidylinositol 3-kinase p85 and CD19 in anti-IgM-stimulated human B-lymphoma cells. Blood 1996; 88: 3502–3507.

    CAS  PubMed  Google Scholar 

  12. Song JJ, Kim JH, Sun BK, Alcala MA Jr, Bartlett DL, Lee YJ . c-Cbl acts as a mediator of Src-induced activation of the PI3K-Akt signal transduction pathway during TRAIL treatment. Cell Signal 2010; 22: 377–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dombrosky-Ferlan PM, Corey SF . Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oncogene product Cbl but not with the p85 subunit of PI 3-kinase. Oncogene 1997; 14: 2019–2024.

    Article  CAS  PubMed  Google Scholar 

  14. Perugini M, Brown AL, Salerno DG, Booker GW, Stojkoski C, Hercus TR et al. Alternative modes of GM-CSF receptor activation revealed using activated mutants of the common beta-subunit. Blood 2010; 115: 3346–3353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee JH, Kim JW, Kim do K, Kim HS, Park HJ, Park DK et al. The Src family kinase Fgr is critical for activation of mast cells and IgE-mediated anaphylaxis in mice. J Immunol 2011; 187: 1807–1815.

    Article  CAS  PubMed  Google Scholar 

  16. Kang HJ, Shin HY, Choi HS, Ahn HS . Novel regimen for the treatment of juvenile myelomonocytic leukemia (JMML). Leukemia Res 2004; 28: 167–170.

    Article  CAS  Google Scholar 

  17. Bergstraesser E, Hasle H, Rogge T, Fischer A, Zimmermann M, Noellke P et al. Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer 2007; 49: 629–633.

    Article  PubMed  Google Scholar 

  18. Castleberry RP, Emanuel PD, Zuckerman KS, Cohn S, Strauss L, Byrd RL et al. A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N Engl J Med 1994; 331: 1680–1684.

    Article  CAS  PubMed  Google Scholar 

  19. Thien CB, Langdon WY . Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Bio 2001; 2: 294–307.

    Article  CAS  Google Scholar 

  20. Duan L, Reddi AL, Ghosh A, Dimri M, Band H . The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling. Immunity 2004; 21: 7–17.

    Article  CAS  PubMed  Google Scholar 

  21. Guthridge MA, Barry EF, Felquer FA, McClure BJ, Stomski FC, Ramshaw H et al. The phosphoserine-585-dependent pathway of the GM-CSF/IL-3/IL-5 receptors mediates hematopoietic cell survival through activation of NF-kappaB and induction of bcl-2. Blood 2004; 103: 820–827.

    Article  CAS  PubMed  Google Scholar 

  22. Stokoe D, McCormick F . Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J 1997; 16: 2384–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan RJ, Leedy MB, Munugalavadla V, Voorhorst CS, Li Y, Yu M et al. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood 2005; 105: 3737–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Flotho C, Kratz C, Niemeyer CM . Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr Drug Targets 2007; 8: 715–725.

    Article  CAS  PubMed  Google Scholar 

  25. Balasis ME, Forinash KD, Chen YA, Fulp WJ, Coppola D, Hamilton AD et al. Combination of farnesyltransferase and Akt inhibitors is synergistic in breast cancer cells and causes significant breast tumor regression in ErbB2 transgenic mice. Clin Cancer Res 2011; 17: 2852–2862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lancet JE, Duong VH, Winton EF, Stuart RK, Burton M, Zhang S et al. A phase I clinical-pharmacodynamic study of the farnesyltransferase inhibitor tipifarnib in combination with the proteasome inhibitor bortezomib in advanced acute leukemias. Clin Cancer Res 2011; 17: 1140–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lyubynska N, Gorman MF, Lauchle JO, Hong WX, Akutagawa JK, Shannon K et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Sci Transl Med 2011; 3: 76ra27.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 2004; 103: 4243–4250.

    Article  CAS  PubMed  Google Scholar 

  29. de Vries AC, Zwaan CM, van den Heuvel-Eibrink MM . Molecular basis of juvenile myelomonocytic leukemia. Haematologica 2010; 95: 179–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Woods WG, Barnard DR, Alonzo TA, Buckley JD, Kobrinsky N, Arthur DC et al. Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children’s Cancer Group. J Clin Oncol 2002; 20: 434–440.

    PubMed  Google Scholar 

  31. Hasle H . Myelodysplastic and myeloproliferative disorders in children. Curr Opin Pediatr 2007; 19: 1–8.

    Article  PubMed  Google Scholar 

  32. Aplenc R, Blaney SM, Strauss LC, Balis FM, Shusterman S, Ingle AM et al. Pediatric phase I trial and pharmacokinetic study of dasatinib: a report from the children's oncology group phase I consortium. J Clin Oncol 2011; 29: 839–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Demetri GD, Lo Russo P, MacPherson IR, Wang D, Morgan JA, Brunton VG et al. Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res 2009; 15: 6232–6240.

    Article  CAS  PubMed  Google Scholar 

  34. Mak AB, Moffat J . A versatile lentiviral expression system to identify mammalian protein-protein interactions. Methods 2012; 57: 409–416.

    Article  CAS  PubMed  Google Scholar 

  35. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000; 2: 423–427.

    Article  CAS  PubMed  Google Scholar 

Download references


We thank Dr Tim Hercus for helpful discussions and for providing GMR reagents. We thank Stephanie Sybingco for the generation of shCbl and shLyn stable cell lines. This work was supported by grants from the Canadian Institutes of Health Research (MOP119356) and the Cancer Research Society. SB is a recipient of the CIHR and Kidney Cancer Foundation fellowship award.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M Ohh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

SB conceptualized the project, designed, performed and interpreted the experiments and wrote the manuscript. KQ assisted in the apoptosis assays. KK assisted in siJAK2 experiments. PH performed ubiquitylation assays. MO conceptualized the project, interpreted the data and wrote the manuscript.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunda, S., Qin, K., Kommaraju, K. et al. Juvenile myelomonocytic leukaemia-associated mutation in Cbl promotes resistance to apoptosis via the Lyn-PI3K/AKT pathway. Oncogene 34, 789–797 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


This article is cited by


Quick links