Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity

Abstract

Resistance to targeted therapies is a major problem in cancer treatment. The epidermal growth factor receptor (EGFR) antibody drugs are effective in a subset of colorectal cancers, but the molecular mechanisms of resistance are understood poorly. Genes involved in epigenetic regulation are frequently deregulated in cancer, raising the possibility that such genes also contribute to drug resistance. Using a focused RNA interference library for genes involved in epigenetic regulation, we identify sirtuin2 (SIRT2), an NAD+-dependent deacetylase, as a modulator of the response to EGFR inhibitors in colon and lung cancer. SIRT2 loss also conferred resistance to BRAF and MEK inhibitors in BRAF mutant melanoma and KRAS mutant colon cancers, respectively. These results warrant further investigation into the potential role of SIRT2 in resistance to drugs that act in the receptor tyrosine kinase-RAS-RAF-MEK-ERK signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ . Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22: 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351: 337–345.

    Article  CAS  PubMed  Google Scholar 

  3. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11: 753–762.

    Article  CAS  PubMed  Google Scholar 

  4. Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ et al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 2001; 85: 692–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samowitz WS, Curtin K, Schaffer D, Robertson M, Leppert M, Slattery ML . Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival: a population-based study. Cancer Epidemiol Biomarkers Prev 2000; 9: 1193–1197.

    CAS  PubMed  Google Scholar 

  6. Geutjes EJ, Bajpe PK, Bernards R . Targeting the epigenome for treatment of cancer. Oncogene 2012; 31: 3827–3844.

    Article  CAS  PubMed  Google Scholar 

  7. Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330: 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE . Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 2003; 63: 560–566.

    CAS  PubMed  Google Scholar 

  9. Liu H, Cheng EH, Hsieh JJ . MLL fusions: pathways to leukemia. Cancer Biol Ther 2009; 8: 1204–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marschalek R . Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol 2011; 152: 141–154.

    Article  CAS  PubMed  Google Scholar 

  11. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395–402.

    Article  CAS  PubMed  Google Scholar 

  15. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012; 483: 100–103.

    Article  CAS  PubMed  Google Scholar 

  16. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011; 20: 487–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang S, Holzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell 2012; 151: 937–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeung F, Ramsey CS, Popko-Scibor AE, Allison DF, Gray LG, Shin M et al. Regulation of the mitogen activated protein kinase kinase (MEK)-1 by NAD+-dependent deacetylases. Oncogene (This issue).

  19. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363: 1532–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331: 1199–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 2011; 43: 875–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glasspool RM, Teodoridis JM, Brown R . Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer 2006; 94: 1087–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012; 487: 114–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151: 1185–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, Schrama JG et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360: 563–572.

    Article  CAS  PubMed  Google Scholar 

  26. Brummelkamp TR, Fabius AW, Mullenders J, Madiredjo M, Velds A, Kerkhoven RM et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2006; 2: 202–206.

    Article  CAS  PubMed  Google Scholar 

  27. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009; 15: 328–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Kees Punt, Sabine Tejpar, Josep Tabernero, Jose Jimenez, Adriana López-Dóriga Guerra, Ramon Salzar and Loredana Vecchione for providing clinical specimen of cetuximab-treated colon cancers. We thank Gerrit Hooiger and Marc van de Vijver (AMC, Amsterdam) for assistance in staining tissue microarrays and Alberto Bardelli for the kind gift of the Difi cells. We thank the NKI Genomics Core Facility, especially Iris de Rink, for support. We also thank Chong Sun and Sidong Huang for helpful discussions. This work was supported by grants from the Dutch Cancer Society (KWF) and the European Union Seventh Framework Program COLTHERES project, grant agreement 259015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bernards.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpe, P., Prahallad, A., Horlings, H. et al. A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity. Oncogene 34, 531–536 (2015). https://doi.org/10.1038/onc.2013.588

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.588

Keywords

This article is cited by

Search

Quick links