Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells

Abstract

Despite significant progress in the treatment of breast cancer, particularly through the use of targeted therapy, relapse and chemoresistance remain a major hindrance to the fight to minimize the burden of the disease. It is becoming increasingly clear that a rare subpopulation of cells known as cancer stem cells (CSC), able to be generated through epithelial-to-mesenchymal transition (EMT) and capable of tumor initiation and self-renewal, contributes to treatment resistance and metastases. This means that a more effective therapy should target both the chemoresistant CSCs and the proliferating epithelial cells that give rise to them to reverse EMT and to attenuate their conversion to CSCs. Here, we demonstrate a novel function of AXL in acting upstream to induce EMT in normal and immortalized human mammary epithelial cells in an apparent positive feedback loop mechanism and regulate breast CSC (BCSC) self-renewal and chemoresistance. Downregulation of AXL using MP470 (Amuvatinib) reversed EMT in mesenchymal normal human mammary epithelial cells and murine BCSCs attenuating self-renewal and restored chemosensitivity of the BCSCs. AXL expression was also found to be associated with the expression of stem cell genes, regulation of metastases genes, increased tumorigenicity and was important for BCSC invasion and migration. Inactivation of AXL also led to the downregulation of nuclear factor-κB pathway and reduced tumor formation in vivo. Taken together, our data suggest that targeted therapy against AXL, in combination with systemic therapies, has the potential to improve response to anticancer therapies and to reduce breast cancer recurrence and metastases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Han JS, Crowe DL . Tumor initiating cancer stem cells from human breast cancer cell lines. Int J Oncol 2009; 34: 1449–1453.

    CAS  PubMed  Google Scholar 

  2. Vermeulen L, Sprick MR, Kemper K, Stassi G, Medema JP . Cancer stem cells—old concepts, new insights. Cell Death Differ 2008; 15: 947–958.

    Article  CAS  PubMed  Google Scholar 

  3. Vicente-Duenas C, Cobaleda C, Perez-Losada J, Sanchez-Garcia I . The evolution of cancer modeling: the shadow of stem cells. Dis Model Mech 2010; 3: 149–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res 2009; 69: 2887–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Radisky DC . Epithelial–mesenchymal transition. J Cell Sci 2005; 118: 4325–4326.

    Article  CAS  PubMed  Google Scholar 

  7. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A . Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS One 2008; 3: e2888.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial–mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  9. Thiery JP . Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  10. Cowin P, Welch DR . Breast cancer progression: controversies and consensus in the molecular mechanisms of metastasis and EMT. J Mammary Gland Biol Neoplasia 2007; 12: 99–102.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee JM, Dedhar S, Kalluri R, Thompson EW . The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C et al. Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 1991; 11: 5016–5031.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bose R, Molina H, Patterson AS, Bitok JK, Periaswamy B, Bader JS et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc Natl Acad Sci USA 2006; 103: 9773–9778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hafizi S, Dahlback B . Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J 2006; 273: 5231–5244.

    Article  CAS  PubMed  Google Scholar 

  15. Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N et al. Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res 2008; 14: 130–138.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009; 28: 3442–3455.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res 2008; 68: 1905–1915.

    Article  CAS  PubMed  Google Scholar 

  18. Gjerdrum C, Tiron C, Høiby T, Stefansson I, Haugen H, Sandal T et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA 2010; 107: 1124–1129.

    Article  CAS  PubMed  Google Scholar 

  19. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 2009; 69: 6871–6878.

    Article  CAS  PubMed  Google Scholar 

  20. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL . TGF{beta}/TNF{alpha}-mediated epithelial–mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 2011; 71: 4707–4719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qi W, Cooke LS, Stejskal A, Riley C, Croce KD, Saldanha JW et al. MP470, a novel receptor tyrosine kinase inhibitor, in combination with Erlotinib inhibits the HER family/PI3K/Akt pathway and tumor growth in prostate cancer. BMC Cancer 2009; 9: 142.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Welsh JW, Mahadevan D, Ellsworth R, Cooke L, Bearss D, Stea B . The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiat Oncol 2009; 4: 69.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meng F, Liu L, Chin PC, D’Mello SR . Akt is a downstream target of NF-kappa B. J Biol Chem 2002; 277: 29674–29680.

    Article  CAS  PubMed  Google Scholar 

  25. Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW . Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene 2008; 27: 4044–4055.

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Li Z, Bai L, Lin Y . NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci 2011; 16: 1172–1185.

    Article  CAS  PubMed Central  Google Scholar 

  27. Shipitsin M, Polyak K . The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 2008; 88: 459–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wicha MS . Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res 2006; 12: 5606–5607.

    Article  PubMed  Google Scholar 

  29. Gangemi R, Paleari L, Orengo AM, Cesario A, Chessa L, Ferrini S et al. Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance. Curr Med Chem 2009; 16: 1688–1703.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta PB, Chaffer CL, Weinberg RA . Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010–1012.

    Article  CAS  PubMed  Google Scholar 

  31. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA et al. Epithelial–mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/−) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 235–252.

    Article  PubMed  Google Scholar 

  32. Rankin EB, Fuh KC, Taylor TE, Krieg AJ, Musser M, Yuan J et al. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 2010; 70: 7570–7579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakano T, Tani M, Ishibashi Y, Kimura K, Park YB, Imaizumi N et al. Biological properties and gene expression associated with metastatic potential of human osteosarcoma. Clin Exp Metast 2003; 20: 665–674.

    Article  CAS  Google Scholar 

  34. Vajkoczy P, Knyazev P, Kunkel A, Capelle HH, Behrndt S, von Tengg-Kobligk H et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci USA 2006; 103: 5799–5804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shieh YS, Lai CY, Kao YR, Shiah SG, Chu YW, Lee HS et al. Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia 2005; 7: 1058–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung BI, Malkowicz SB, Nguyen TB, Libertino JA, McGarvey TW . Expression of the proto-oncogene Axl in renal cell carcinoma. DNA Cell Biol 2003; 22: 533–540.

    Article  CAS  PubMed  Google Scholar 

  37. van Ginkel PR, Gee RL, Shearer RL, Subramanian L, Walker TM, Albert DM et al. Expression of the receptor tyrosine kinase Axl promotes ocular melanoma cell survival. Cancer Res 2004; 64: 128–134.

    Article  CAS  PubMed  Google Scholar 

  38. Craven RJ, Xu LH, Weiner TM, Fridell YW, Dent GA, Srivastava S et al. Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer 1995; 60: 791–797.

    Article  CAS  PubMed  Google Scholar 

  39. Song X, Wang H, Logsdon CD, Rashid A, Fleming JB, Abbruzzese JL et al. Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer 117: 734–743.

    Article  PubMed  Google Scholar 

  40. Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 2011; 30: 1436–1448.

    Article  CAS  PubMed  Google Scholar 

  41. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  43. Koorstra JB, Karikari CA, Feldmann G, Bisht S, Rojas PL, Offerhaus GJ et al. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol Ther 2009; 8: 618–626.

    Article  CAS  PubMed  Google Scholar 

  44. Lee WP, Liao Y, Robinson D, Kung HJ, Liu ET, Hung MC . Axl–gas6 interaction counteracts E1A-mediated cell growth suppression and proapoptotic activity. Mol Cell Biol 1999; 19: 8075–8082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res 2010; 70: 1544–1554.

    Article  CAS  PubMed  Google Scholar 

  46. Keating AK, Kim GK, Jones AE, Donson AM, Ware K, Mulcahy JM et al. Inhibition of Mer and Axl receptor tyrosine kinases in astrocytoma cells leads to increased apoptosis and improved chemosensitivity. Mol Cancer Ther 2010; 9: 1298–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 2008; 10: R52.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a generous gift from Martha and Bruce Atwater (KLK); Howard Temin Award, K01-CA100764 (KLK); R01-CA122086 (DCR); and the Mayo Clinic Breast Cancer Specialized Program of Research Excellence Award, P50-CA116201 (JNI). This publication was also supported by NIH/NCRR CTSA Grant Number UL1 RR024150. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. We acknowledge the strong support of the Mayo Clinic Comprehensive Cancer Center for providing access to core facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M K Asiedu or K L Knutson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asiedu, M., Beauchamp-Perez, F., Ingle, J. et al. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 33, 1316–1324 (2014). https://doi.org/10.1038/onc.2013.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.57

Keywords

This article is cited by

Search

Quick links