Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Estrogen-dependent sushi domain containing 3 regulates cytoskeleton organization and migration in breast cancer cells

Abstract

Aromatase inhibitors (AIs) are the standard endocrine therapy for postmenopausal breast cancer; however, currently used biomarkers, such as, estrogen receptor-alpha/progesterone receptor (ERα/PR), predict only slightly more than half of the potential responders to AI treatment. To identify novel markers of AI responsiveness, a genome-wide microarray analysis was performed using primary breast tumor samples from 50 postmenopausal women who later developed metastatic breast cancer. Sushi domain containing 3 (SUSD3) is a significantly differentially expressed gene, with 3.38-fold higher mRNA levels in AI-responsive breast tumors vs non-responders (P<0.001). SUSD3 was highly expressed in ERα-positive breast tumors and treatment with estradiol increased SUSD3 expression in ERα-positive breast cancer cells. Treatment with an antiestrogen or ERα knockdown abolished basal and estradiol-dependent SUSD3 expression. Recruitment of ERα upstream of the transcription start site of SUSD3 was demonstrated by chromatin immunoprecipitation–PCR. Flow cytometric analysis of SUSD3-knockdown cells revealed blunted estradiol effects on progression into S and M phases. SUSD3 was localized to the plasma membrane of breast cancer cells. SUSD3 knockdown decreased the appearance of actin-rich protrusions, stress fibers and large basal focal adhesions, while increasing the presence of cortical actin concomitant with a decrease in Rho and focal adhesion kinase activity. SUSD3-deficient cells demonstrated diminished cell spreading, cell–cell adhesion and motility. In conclusion, SUSD3 is a novel promoter of estrogen-dependent cell proliferation and regulator of cell–cell and cell–substrate interactions and migration in breast cancer. It may serve as a novel predictor of response to endocrine therapy and potential therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anderson WF, Chatterjee N, Ershler WB, Brawley O . Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results Database. Breast Cancer Res Treat 2002; 76: 26–36.

    Article  Google Scholar 

  2. Osborne CK, McGuire WL . Hormone receptors in primary and advanced breast cancer. Clin Endocrinol Metab 1980; 9: 361–368.

    Article  PubMed  Google Scholar 

  3. Saranya C, Howes T, Bao T, Sabnis G, Brodie A . Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 2011; 125: 13–22.

    Article  Google Scholar 

  4. Miller WR . Aromatase and the breast: Regulation and clinical aspects. Maturitas 2006; 54: 335–341.

    Article  CAS  PubMed  Google Scholar 

  5. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ . Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009; 20: 1319–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith IE, Dowsett M, Yap YS, Walsh G, Lonning PE, Santen RJ et al. Adjuvant aromatase inhibitors for early breast cancer after chemotherapy-induced amenorrhoea: caution and suggested guidelines. J Clin Oncol 2006; 24: 2444–2447.

    Article  CAS  PubMed  Google Scholar 

  7. Burstein HJ, Prestrud AA, Seidenfeld J, Anderson H, Buchholz T, Davidson N et al. American Society of Clinical Oncology Clinical Practice Guideline: update on adjuvant endocrine therapy for women with hormone-receptor-positive breast cancer. J Clin Oncol 2010; 28: 3784–3796.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anderson H, Bulun SE, Smith I, Dowsett M . Predictors of response to aromatase inhibitors. J Steroid Biochem Mol Biol 2007; 106: 49–54.

    Article  CAS  PubMed  Google Scholar 

  9. Stuart-Harris R, Shadbolt B, Palmquist C, Chaudri Ross HA . The prognostic significance of single hormone receptor positive metastatic breast cancer: an analysis of three randomized phase III trials of aromatase inhibitors. Breast 2009; 18: 351–355.

    Article  CAS  PubMed  Google Scholar 

  10. Anderson H, Hills M, Zabaglo L, A’hern R, Leary AF, Haynes BP et al. Relationship between estrogen receptor, progesterone receptor, HER-2 and Ki67 expression and efficacy of aromatase inhibitors in advanced breast cancer. Ann Oncol 2011; 22: 1770–1776.

    Article  CAS  PubMed  Google Scholar 

  11. Eiermann W, Paepke S, Appfelstaedt J, Llombart-Cussac A, Eremin J, Vinholes J et al. Preoperative treatment of postmenopausal breast cancer patients with letrozole: a randomized double-blind multicenter study. Ann Oncol 2001; 12: 1527–1532.

    Article  CAS  PubMed  Google Scholar 

  12. Smith IE, Dowsett M, Ebbs SR, Dixon JM, Skene A, Blohmer JU et al. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicenter double-blind randomized trial. J Clin Oncol 2005; 23: 5108–5116.

    Article  CAS  PubMed  Google Scholar 

  13. Miller WR . Aromatase inhibitors: prediction of response and nature of resistance. Expert Opin Pharmacother 2010; 11: 1873–1887.

    Article  CAS  PubMed  Google Scholar 

  14. Bernhard J, Thurlimann B, Schimtz SFH, Castiglione-Gertsch M, Cavalli F, Morant R et al. Defining clinical benefit in postmenopausal patients with breast cancer under second-line endocrine treatment: Does quality of life matter? J Clin Oncol 1999; 17: 1672–1679.

    Article  CAS  PubMed  Google Scholar 

  15. Moy I, Lin ZH, Rademaker F, Reierstad S, Khan S, Bulun S . Expression of estrogen-related gene markers in breast cancer tissue predicts aromatase inhibitor responsiveness. PLoS One 8: e77543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JM, Lee KH, Jeon YJ, Oh JH, Jeong SY, Song IS et al. Identification of genes related to Parkinson’s disease using expressed sequence tags. DNA Res 2006; 13: 275–286.

    Article  CAS  PubMed  Google Scholar 

  17. Schug J . Using TESS to Predict Transcription Factor Binding Sites in DNA Sequence. Curr Protoc Bioinformatics 2008, Chapter 2: Unit 2.6.

  18. Li Y, Wang JP, Santen FJ, Kim TH, Park Y, Fan P et al. Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinology 2010; 151: 5146–5156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A et al. Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res 2010; 70: 4092–4101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, Simoncini T . Estrogen Receptor α promotes breast cancer cell motility and invasion via focal adhesion kinase and N-WASP. Mol Endocrinol 2010; 24: 2114–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sieg DJ, Hauck CR, Schlaepfer DD . Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci 1999; 112 (Pt 16): 2677–2691.

    CAS  PubMed  Google Scholar 

  22. Hall Alan . RhoGTPase and actin cytoskeleton. Science 1998; 279: 509–513.

    Article  CAS  PubMed  Google Scholar 

  23. Spiering D, Hodgson L . Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr 2011; 5: 170–180.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chrzanowska-Wodnicka M, Burridge K . Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 1996; 133: 1403–1315.

    Article  CAS  PubMed  Google Scholar 

  25. Chan KT, Cortesio CL, Huttenlocher A . FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J Cell Biol 2009; 185: 357–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Provenzao PP, Keely PJ . The role of focal adhesion kinase in tumor initiation and progression. Cell Adh Migr 2009; 3: 347–350.

    Article  Google Scholar 

  27. Tomar A, Schlaepfer DD . Focal adhesion kinase: switching between GAPS and GEFs in the regulation of cell motility. Curr Opin Cell Biol 2009; 21: 676–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Webb E, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT et al. FAK-Src signaling through paxillin, ERK, and MLCK regulates adhesion disassembly. Nat Cell Biol 2004; 6: 154–161.

    Article  CAS  PubMed  Google Scholar 

  29. Dermaudt TB, Dujardin D, Hamadi A, Noulet F, Kolli K, De Mey J et al. FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion. Mol Biol Cell 2011; 22: 964–975.

    Article  Google Scholar 

  30. Burbelo P, Wellstein A, Pestell RG . Altered RhoGTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat 2004; 84: 43–48.

    Article  CAS  PubMed  Google Scholar 

  31. Tang Y, Olufemi L, Wang MT, Nie D . Role of Rho GTPases in breast cancer. Front Biosci 2008; 13: 759–776.

    Article  CAS  PubMed  Google Scholar 

  32. Arimidex, Tamoxifen, Alone or in Combination (ATAC) Trialists’ Group Forbes JF, Cuzick J, Buzdar A, Howell A, Tobias JS et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early breast cancer: 100 month analysis of the ATAC trial. Lancet Oncol 2008; 9: 45–53.

    Article  Google Scholar 

  33. Coombes RC, Kilburn LS, Snowdon CF, Paridaens R, Coleman RE, Jones SE et al. Survival and safety of exemestane versus tamoxifen after 2-3 years’ tamoxifen treatment (Intergroup Exemestane Study): a randomized controlled trial. Lancet 2007; 9561: 559–570.

    Article  Google Scholar 

  34. The Breast International Group 1-98 Collaborative Group, A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 2005; 353: 2747–2757.

    Article  Google Scholar 

  35. Galanina N, Bossuyt V, Harris LN . Molecular predictors of response to therapy for breast cancer. Cancer J 2011; 17: 96–103.

    Article  PubMed  Google Scholar 

  36. Weigel MT, Dowsett M . Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer 2010; 17: R245–R262.

    Article  CAS  PubMed  Google Scholar 

  37. The UniProt Consortium, Ongoing and future developments in the Universal Protein Resource. Nucleic Acids Res 2011; 39: D214–D219.

    Article  Google Scholar 

  38. Abba MC, Hu Y, Sun H, Drake JA, Gaddis S, Baggerly K et al. Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genomics 2005; 6: 37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Parris TZ, Danielsson A, Nemes S, Kovacs A, Delle U, Fallenius G et al. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res 2010; 16: 3860–3874.

    Article  CAS  PubMed  Google Scholar 

  40. Watson AP, Evans RL, Egland KA . Multiple functions of sushi domain containing 2 (SUSD2) in breast tumorigenesis. Mol Cancer Res 2013; 11: 74–85.

    Article  CAS  PubMed  Google Scholar 

  41. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL . Downstream targets of growth factor and oestrogen signaling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 2005; 12 (Suppl 1): S47–S59.

    Article  CAS  PubMed  Google Scholar 

  42. Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, Simoncini T . Estrogen Receptor-alpha promotes breast cancer cell motility and invasion via focal adhesion kinase and N-WASP. Mol Endocrinol 2010; 24: 2114–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R et al. Linkage of rapid estrogen action to MAPK activation by ERα-Shc association and Shc pathway activation. Mol Endocrinol 2002; 16: 116–127.

    CAS  PubMed  Google Scholar 

  44. Tilghman RW, Slack-Davis JK, Sergina N, Martin KH, Iwanicki M, Hershey ED . Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J Cell Sci 2005; 118: 2613–2623.

    Article  CAS  PubMed  Google Scholar 

  45. Makrilia N, Kollias A, Manolopoulos L, Syrigos K . Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 2009; 27: 1023–1037.

    Article  CAS  PubMed  Google Scholar 

  46. Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, Oosting J et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 2006; 94: 661–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hajra KM, Fearon ER . Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002; 34: 255–268.

    Article  CAS  PubMed  Google Scholar 

  48. Lin Z, Yin P, Reierstad S, O’Halloran M, Coon VJ, Pearson EK et al. Adenosine A1 receptor, a target and regulator of estrogen receptor alpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene 2010; 29: 1114–1122.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng YH, Utsunomiya H, Pavone ME, Yin P, Bulun SE . Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms. J Mol Endocrinol 2011; 46: 139–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahn RW, Chen F, Chen H, Stern ST, Clogston JD, Patri AK et al. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin Cancer Res 2010; 16: 3607–3617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Storey J . A direct approach to false discovery rates. J Royal Stat Soc B 2002; 64: 479–498.

    Article  Google Scholar 

  52. Jacobberger JW . Flow cytometric analysis of intracellular protein epitopes. In: Stewart CC, Nicholson JKA (eds) Immunophenotypic Cytometric Cellular Analysis. John Wiley & Sons, New York, 2000, pp 361–406.

    Google Scholar 

  53. Juan G, Darzynkiewicz Z . Detection of mitotic cells. Curr Protoc Cytometry 2004, Chapter 7: Unit 7.24.

  54. Parker JB, Palchaudhuri S, Yin HW, Wei J, Chakravarti D . A transcriptional regulatory role of the THAP11-HCF1 complex in colon cancer cell function. Mol Cell Biol 2012; 32: 1654–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee TI, Johnstone SE, Young RA . Chromatin immunoprecipitation and microarray-based analysis of protein localization. Nat Protoc 2006; 1: 729–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hudson TY, Fontao L, Godsel LM, Choi HJ, Huen AC, Borradori L et al. In vitro methods for investigating desmoplakin-intermediate filament interactions and their role in adhesive strength. Methods Cell Biol 2004; 78: 757–786.

    Article  CAS  PubMed  Google Scholar 

  57. Kim JB, Islam S, Kim KJ, Prudoff RS, Sass KM, Wheelock NJ et al. N-cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility. J Cell Biol 2000; 151: 1193–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the AVON Foundation (to SEB), a Northwestern Memorial Foundation Dixon Priority Initiative Grant (SEB) and National Cancer Institute (CA122151, to KJG). The imaging work performed at Northwestern University Cell Imaging Facility was supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive Cancer Center. We thank Satya Khuon for her assistance in our confocal work. We thank Mitch Dowsett, Helen Cotterill, Roger A’Hern, Ben Haynes and Ian Smith from the Royal Marsden Hospital in London, England, for making the patient samples available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Bulun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moy, I., Todorović, V., Dubash, A. et al. Estrogen-dependent sushi domain containing 3 regulates cytoskeleton organization and migration in breast cancer cells. Oncogene 34, 323–333 (2015). https://doi.org/10.1038/onc.2013.553

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.553

Keywords

This article is cited by

Search

Quick links