Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAFV600E or wild-type BRAF

Abstract

Molecular signature of advanced and metastatic thyroid carcinoma involves deregulation of multiple fundamental pathways activated in the tumor microenvironment. They include BRAFV600E and AKT that affect tumor initiation, progression and metastasis. Human thyroid cancer orthotopic mouse models are based on human cell lines that generally harbor genetic alterations found in human thyroid cancers. They can reproduce in vivo and in situ (into the thyroid) many features of aggressive and refractory human advanced thyroid carcinomas, including local invasion and metastasis. Humanized orthotopic mouse models seem to be ideal and commonly used for preclinical and translational studies of compounds and therapies not only because they may mimic key aspects of human diseases (e.g. metastasis), but also for their reproducibility. In addition, they might provide the possibility to evaluate systemic effects of treatments. So far, human thyroid cancer in vivo models were mainly used to test single compounds, non selective and selective. Despite the greater antitumor activity and lower toxicity obtained with different selective drugs in respect to non-selective ones, most of them are only able to delay disease progression, which ultimately could restart with similar aggressive behavior. Aggressive thyroid tumors (for example, anaplastic or poorly differentiated thyroid carcinoma) carry several complex genetic alterations that are likely cooperating to promote disease progression and might confer resistance to single-compound approaches. Orthotopic models of human thyroid cancer also hold the potential to be good models for testing novel combinatorial therapies. In this article, we will summarize results on preclinical testing of selective and nonselective single compounds in orthotopic mouse models based on validated human thyroid cancer cell lines harboring the BRAFV600E mutation or with wild-type BRAF. Furthermore, we will discuss the potential use of this model also for combinatorial approaches, which are expected to take place in the upcoming human thyroid cancer basic and clinical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Davies L, Welch HG . Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006; 295: 2164–2167.

    CAS  PubMed  Google Scholar 

  2. Ito Y, Nikiforov YE, Schlumberger M, Vigneri R . Increasing incidence of thyroid cancer: controversies explored. Nat Rev Endocrinol 2013; 9: 178–184.

    CAS  PubMed  Google Scholar 

  3. Maxon HR . Detection of residual and recurrent thyroid cancer by radionuclide imaging. Thyroid 1999; 9: 443–446.

    CAS  PubMed  Google Scholar 

  4. American Thyroid Association Guidelines Taskforce on Thyroid N, Differentiated Thyroid C, Cooper DS, Doherty GM, Haugen BR, Kloos RT et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 1167–1214.

    Google Scholar 

  5. Brown RL, de Souza JA, Cohen EE . Thyroid cancer: burden of illness and management of disease. J Cancer 2011; 2: 193–199.

    PubMed  PubMed Central  Google Scholar 

  6. Mazzaferri EL, Jhiang SM . Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994; 97: 418–428.

    CAS  PubMed  Google Scholar 

  7. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892–2899.

    CAS  PubMed  Google Scholar 

  8. Brassard M, Borget I, Edet-Sanson A, Giraudet AL, Mundler O, Toubeau M et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab 2011; 96: 1352–1359.

    CAS  PubMed  Google Scholar 

  9. Tisset H, Kamar N, Faugeron I, Roy P, Pouteil-Noble C, Klein M et al. Is thyroid cancer recurrence risk increased after transplantation? J Clin Endocrinol Metab 2013; 98: 3981–3988.

    CAS  PubMed  Google Scholar 

  10. McDonald MP, Sanders LE, Silverman ML, Chan HS, Buyske J . Hurthle cell carcinoma of the thyroid gland: prognostic factors and results of surgical treatment. Surgery 1996; 120: 1000–1004 discussion 4-5.

    CAS  PubMed  Google Scholar 

  11. Sanders LE, Silverman M . Follicular and Hurthle cell carcinoma: predicting outcome and directing therapy. Surgery 1998; 124: 967–974.

    CAS  PubMed  Google Scholar 

  12. Shaha AR, Loree TR, Shah JP . Prognostic factors and risk group analysis in follicular carcinoma of the thyroid. Surgery 1995; 118: 1131–1136 discussion 6-8.

    CAS  PubMed  Google Scholar 

  13. Yutan E, Clark OH . Hurthle cell carcinoma. Curr Treat Options Oncol 2001; 2: 331–335.

    CAS  PubMed  Google Scholar 

  14. Girelli ME, Nacamulli D, Pelizzo MR, De Vido D, Mian C, Piccolo M et al. Medullary thyroid carcinoma: clinical features and long-term follow-up of seventy-eight patients treated between 1969 and 1986. Thyroid 1998; 8: 517–523.

    CAS  PubMed  Google Scholar 

  15. Modigliani E, Cohen R, Campos JM, Conte-Devolx B, Maes B, Boneu A et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d’etude des tumeurs a calcitonine. Clin Endocrinol 1998; 48: 265–273.

    CAS  Google Scholar 

  16. Xing M . Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013; 13: 184–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Knauf JA, Fagin JA . Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets. Curr Opin Cell Biol 2009; 21: 296–303.

    CAS  PubMed  Google Scholar 

  18. Nucera C, Goldfarb M, Hodin R, Parangi S . Role of B-Raf(V600E) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf(V600E). Biochim Biophys Acta 2009; 1795: 152–161.

    CAS  PubMed  Google Scholar 

  19. Franco AT, Malaguarnera R, Refetoff S, Liao XH, Lundsmith E, Kimura S et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci USA 2011; 108: 1615–1620.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Orim F, Bychkov A, Shimamura M, Nakashima M, Ito M, Matsuse M et al. Thyrotropin signaling confers more aggressive features with higher genomic instability on BRAF<sup>V600E</sup>-induced thyroid tumors in a mouse model. Thyroid 2013; 7: 7.

    Google Scholar 

  21. Shimamura M, Nakahara M, Orim F, Kurashige T, Mitsutake N, Nakashima M et al. Postnatal Expression of BRAFV600E Does Not Induce Thyroid Cancer in Mouse Models of Thyroid Papillary Carcinoma. Endocrinology 2013; 154: 4423–4430.

    CAS  PubMed  Google Scholar 

  22. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab 2008; 93: 3106–3116.

    CAS  PubMed  Google Scholar 

  23. Saji M, Ringel MD . The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol Cell Endocrinol 2010; 321: 20–28.

    CAS  PubMed  Google Scholar 

  24. Carlomagno F, Santoro M . Thyroid cancer in 2010: a roadmap for targeted therapies. Nat Rev Endocrinol 2011; 7: 65–67.

    CAS  PubMed  Google Scholar 

  25. Xing M . Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 2010; 20: 697–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304: 554.

    Article  CAS  PubMed  Google Scholar 

  27. Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009; 69: 4885–4893.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia-Rostan G, Costa AM, Pereira-Castro I, Salvatore G, Hernandez R, Hermsem MJ et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res 2005; 65: 10199–10207.

    CAS  PubMed  Google Scholar 

  29. Deshpande HA, Roman S, Sosa JA . New targeted therapies and other advances in the management of anaplastic thyroid cancer. Curr Opin Oncol 2013; 25: 44–49.

    CAS  PubMed  Google Scholar 

  30. Lee J, Hwang JA, Lee EK . Recent progress of genome study for anaplastic thyroid cancer. Genomics Inform 2013; 11: 68–75.

    PubMed  PubMed Central  Google Scholar 

  31. Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012; 22: 1104–1139.

    PubMed  Google Scholar 

  32. Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007; 39: 347–351.

    CAS  PubMed  Google Scholar 

  33. Miller KA, Yeager N, Baker K, Liao XH, Refetoff S, Di Cristofano A . Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res 2009; 69: 3689–3694.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 2011; 121: 4700–4711.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Charles RP, Iezza G, Amendola E, Dankort D, McMahon M . Mutationally activated BRAF(V600E) elicits papillary thyroid cancer in the adult mouse. Cancer Res 2011; 71: 3863–3871.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu C, Zhu X, Willingham MC, Cheng SY . Activation of tumor cell proliferation by thyroid hormone in a mouse model of follicular thyroid carcinoma. Oncogene 2012; 31: 2007–2016.

    CAS  PubMed  Google Scholar 

  37. Saji M, Narahara K, McCarty SK, Vasko VV, La Perle KM, Porter K et al. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer. Oncogene 2011; 30: 4307–4315.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Abate-Shen C, Pandolfi PP . Effective utilization and appropriate selection of genetically engineered mouse models for translational integration of mouse and human trials. Cold Spring Harb Protoc (e-pub ahead of print 1 Novenber 2013; doi:10.1101/pdb.top078774).

    Google Scholar 

  39. Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005; 65: 4238–4245.

    CAS  PubMed  Google Scholar 

  40. Bos PD, Nguyen DX, Massague J . Modeling metastasis in the mouse. Curr Opin Pharmacol 2010; 10: 571–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Khanna C, Hunter K . Modeling metastasis in vivo. Carcinogenesis 2005; 26: 513–523.

    CAS  PubMed  Google Scholar 

  42. McClatchey AI . Modeling metastasis in the mouse. Oncogene 1999; 18: 5334–5339.

    CAS  PubMed  Google Scholar 

  43. Van Dyke T, Jacks T . Cancer modeling in the modern era: progress and challenges. Cell 2002; 108: 135–144.

    CAS  PubMed  Google Scholar 

  44. Kerbel RS . Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2003; 2 (Suppl 1): S134–S139.

    CAS  PubMed  Google Scholar 

  45. Killion JJ, Radinsky R, Fidler IJ . Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 1998; 17: 279–284.

    PubMed  Google Scholar 

  46. Sharkey FE, Fogh J . Metastasis of human tumors in athymic nude mice. Int J Cancer 1979; 24: 733–738.

    CAS  PubMed  Google Scholar 

  47. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001; 84: 1424–1431.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Scholz CC, Berger DP, Winterhalter BR, Henss H, Fiebig HH . Correlation of drug response in patients and in the clonogenic assay with solid human tumour xenografts. Eur J Cancer 1990; 26: 901–905.

    CAS  PubMed  Google Scholar 

  49. Priolo C, Agostini M, Vena N, Ligon AH, Fiorentino M, Shin E et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol 2010; 176: 1901–1913.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 2008; 93: 4331–4341.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nucera C, Nehs MA, Mekel M, Zhang X, Hodin R, Lawler J et al. A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 2009; 19: 1077–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bosma MJ, Carroll AM . The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991; 9: 323–350.

    CAS  PubMed  Google Scholar 

  53. Bancroft GJ, Kelly JP . Macrophage activation and innate resistance to infection in SCID mice. Immunobiology 1994; 191: 424–431.

    CAS  PubMed  Google Scholar 

  54. Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ et al. B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci USA 2010; 107: 10649–10654.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan CM, Jing X, Pike LA, Zhou Q, Lim DJ, Sams SB et al. Targeted inhibition of Src kinase with dasatinib blocks thyroid cancer growth and metastasis. Clin Cancer Res 2012; 18: 3580–3591.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu W, Cheng S, Asa SL, Ezzat S . The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis. Cancer Res 2008; 68: 8104–8112.

    CAS  PubMed  Google Scholar 

  57. Nehs MA, Nagarkatti S, Nucera C, Hodin RA, Parangi S . Thyroidectomy with neoadjuvant PLX4720 extends survival and decreases tumor burden in an orthotopic mouse model of anaplastic thyroid cancer. Surgery 2010; 148: 1154–1162 discussion 62.

    PubMed  Google Scholar 

  58. Nehs MA, Nucera C, Nagarkatti SS, Sadow PM, Morales-Garcia D, Hodin RA et al. Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an orthotopic mouse model of human anaplastic thyroid cancer. Endocrinology 2012; 153: 985–994.

    CAS  PubMed  Google Scholar 

  59. Bellelli R, Castellone MD, Garcia-Rostan G, Ugolini C, Nucera C, Sadow PM et al. FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocr Relat Cancer 2012; 19: 695–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Colston KW, James SY, Ofori-Kuragu EA, Binderup L, Grant AG . Vitamin D receptors and anti-proliferative effects of vitamin D derivatives in human pancreatic carcinoma cells in vivo and in vitro. Br J Cancer 1997; 76: 1017–1020.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hershberger PA, Modzelewski RA, Shurin ZR, Rueger RM, Trump DL, Johnson CS . 1,25-Dihydroxycholecalciferol (1,25-D3) inhibits the growth of squamous cell carcinoma and down-modulates p21(Waf1/Cip1) in vitro and in vivo. Cancer Res 1999; 59: 2644–2649.

    CAS  PubMed  Google Scholar 

  62. Mathiasen IS, Sergeev IN, Bastholm L, Elling F, Norman AW, Jaattela M . Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J Biol Chem 2002; 277: 30738–30745.

    CAS  PubMed  Google Scholar 

  63. Palmer HG, Sanchez-Carbayo M, Ordonez-Moran P, Larriba MJ, Cordon-Cardo C, Munoz A . Genetic signatures of differentiation induced by 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Res 2003; 63: 7799–7806.

    CAS  PubMed  Google Scholar 

  64. Liu W, Asa SL, Fantus IG, Walfish PG, Ezzat S . Vitamin D arrests thyroid carcinoma cell growth and induces p27 dephosphorylation and accumulation through PTEN/akt-dependent and -independent pathways. Am J Pathol 2002; 160: 511–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dackiw AP, Ezzat S, Huang P, Liu W, Asa SL . Vitamin D3 administration induces nuclear p27 accumulation, restores differentiation, and reduces tumor burden in a mouse model of metastatic follicular thyroid cancer. Endocrinology 2004; 145: 5840–5846.

    CAS  PubMed  Google Scholar 

  66. Sharma V, Fretwell D, Crees Z, Kerege A, Klopper JP . Thyroid cancer resistance to vitamin D receptor activation is associated with 24-hydroxylase levels but not the ff FokI polymorphism. Thyroid 2010; 20: 1103–1111.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ciampi R, Nikiforov YE . RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology 2007; 148: 936–941.

    CAS  PubMed  Google Scholar 

  68. Ensinger C, Spizzo G, Moser P, Tschoerner I, Prommegger R, Gabriel M et al. Epidermal growth factor receptor as a novel therapeutic target in anaplastic thyroid carcinomas. Ann N Y Acad Sci 2004; 1030: 69–77.

    CAS  PubMed  Google Scholar 

  69. Viglietto G, Maglione D, Rambaldi M, Cerutti J, Romano A, Trapasso F et al. Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 1995; 11: 1569–1579.

    CAS  PubMed  Google Scholar 

  70. Dhar DK, Kubota H, Kotoh T, Tabara H, Watanabe R, Tachibana M et al. Tumor vascularity predicts recurrence in differentiated thyroid carcinoma. Am J Surgery 1998; 176: 442–447.

    CAS  Google Scholar 

  71. Fenton C, Patel A, Dinauer C, Robie DK, Tuttle RM, Francis GL . The expression of vascular endothelial growth factor and the type 1 vascular endothelial growth factor receptor correlate with the size of papillary thyroid carcinoma in children and young adults. Thyroid 2000; 10: 349–357.

    CAS  PubMed  Google Scholar 

  72. Gule MK, Chen Y, Sano D, Frederick MJ, Zhou G, Zhao M et al. Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model. Clin Cancer Res 2011; 17: 2281–2291.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sherman SI . Lessons learned and questions unanswered from use of multitargeted kinase inhibitors in medullary thyroid cancer. Oral Oncol 2013; 49: 707–710.

    CAS  PubMed  Google Scholar 

  74. Araujo J, Logothetis C . Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 2010; 36: 492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E et al. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Eur J Pharmacol 2008; 599: 44–53.

    CAS  PubMed  Google Scholar 

  76. Kopetz S, Shah AN, Gallick GE . Src continues aging: current and future clinical directions. Clin Cancer Res 2007; 13: 7232–7236.

    CAS  PubMed  Google Scholar 

  77. Irby RB, Yeatman TJ . Role of Src expression and activation in human cancer. Oncogene 2000; 19: 5636–5642.

    CAS  PubMed  Google Scholar 

  78. Fizazi K . The role of Src in prostate cancer. Ann Oncol 2007; 18: 1765–1773.

    CAS  PubMed  Google Scholar 

  79. Schweppe RE, Kerege AA, French JD, Sharma V, Grzywa RL, Haugen BR . Inhibition of Src with AZD0530 reveals the Src-Focal Adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J Clin Endocrinol Metab 2009; 94: 2199–2203.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Henderson YC, Toro-Serra R, Chen Y, Ryu J, Frederick MJ, Zhou G et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck (e-pub ahead of print 1 June 2013; doi:10.1002/hed.23316).

    Google Scholar 

  81. Lyons JF, Wilhelm S, Hibner B, Bollag G . Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8: 219–225.

    CAS  PubMed  Google Scholar 

  82. Wilhelm S, Chien DS . BAY 43-9006: preclinical data. Curr Pharm Des 2002; 8: 2255–2257.

    CAS  PubMed  Google Scholar 

  83. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109.

    CAS  PubMed  Google Scholar 

  84. Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006; 98: 326–334.

    CAS  PubMed  Google Scholar 

  85. Salvatore G, De Falco V, Salerno P, Nappi TC, Pepe S, Troncone G et al. BRAF Is a Therapeutic Target in Aggressive Thyroid Carcinoma. Clin Cancer Res 2006; 12: 1623–1629.

    CAS  PubMed  Google Scholar 

  86. Henderson YC, Ahn SH, Kang Y, Clayman GL . Sorafenib potently inhibits papillary thyroid carcinomas harboring RET/PTC1 rearrangement. Clin Cancer Res 2008; 14: 4908–4914.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH, Gartel AL . Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res 2006; 66: 9731–9735.

    CAS  PubMed  Google Scholar 

  88. Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R . Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 2004; 6: 744–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wierstra I, Alves J . FOXM1, a typical proliferation-associated transcription factor. Biol Chem 2007; 388: 1257–1274.

    CAS  PubMed  Google Scholar 

  90. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 2008; 105: 3041–3046.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nucera C, Nehs MA, Nagarkatti SS, Sadow PM, Mekel M, Fischer AH et al. Targeting BRAFV600E with PLX4720 displays potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer. Oncologist 2011; 16: 296–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467: 596–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 2010; 107: 14903–14908.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res 2010; 70: 5518–5527.

    CAS  PubMed  Google Scholar 

  95. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 2012; 366: 707–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N Engl J Med 2010; 363: 809–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 2008; 68: 4853–4861.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010; 464: 427–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Su F, Bradley WD, Wang Q, Yang H, Xu L, Higgins B et al. Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res 2012; 72: 969–978.

    CAS  PubMed  Google Scholar 

  101. Trunzer K, Pavlick AC, Schuchter L, Gonzalez R, McArthur GA, Hutson TE et al. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. J Clin Oncol 2013; 31: 1767–1774.

    CAS  PubMed  Google Scholar 

  102. Xing J, Liu R, Xing M, Trink B . The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochem Biophys Res Commun 2011; 404: 958–962.

    CAS  PubMed  Google Scholar 

  103. Kim K, Cabanillas M, Lazar AJ, Williams MD, Sanders DL, Ilagan JL et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring V600EBRAF mutation. Thyroid 2013; 23: 1277–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosove MH, Peddi PF, Glaspy JA . BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med 2013; 368: 684–685.

    CAS  PubMed  Google Scholar 

  105. Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF mutation. Thyroid 2013; 17: 17.

    Google Scholar 

  106. Tsimberidou AM, Vaklavas C, Wen S, Hong D, Wheler J, Ng C et al. Phase I clinical trials in 56 patients with thyroid cancer: the M. D. Anderson Cancer Center experience. J Clin Endocrinol Metab 2009; 94: 4423–4432.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012; 2: 227–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 2013; 3: 520–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012; 483: 100–103.

    CAS  PubMed  Google Scholar 

  110. Leboeuf R, Baumgartner JE, Benezra M, Malaguarnera R, Solit D, Pratilas CA et al. BRAFV600E mutation is associated with preferential sensitivity to mitogen-activated protein kinase kinase inhibition in thyroid cancer cell lines. J Clin Endocrinol Metab 2008; 93: 2194–2201.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kandil E, Tsumagari K, Ma J, Abd Elmageed ZY, Li X, Slakey D et al. Synergistic inhibition of thyroid cancer by suppressing MAPK/PI3K/AKT pathways. J Surg Res 2013; 184: 898–906.

    CAS  PubMed  Google Scholar 

  112. Liu D, Xing J, Trink B, Xing M . BRAF mutation-selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic-potentiated synergism with the mTOR inhibitor temsirolimus. Int J Cancer 2010; 127: 2965–2973.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pal SK, Reckamp K, Yu H, Figlin RA . Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investigat Drugs 2010; 19: 1355–1366.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grants NIHR21CA165039-01A1 and the American Thyroid Association funds for Thyroid Cancer Research to Carmelo Nucera (Principal Investigator: Human Thyroid Cancers Preclinical and Translational Research). Carmelo Nucera was also a recipient of the Guido Berlucchi research award (Brescia, Italy). Zeus A Antonello was a Masters Student at the BIDMC and is currently a PhD Student at the Instituto de Neurociencias (Alicante, Spain). We thank Mark Duquette and Neal Smith (BIDMC, Harvard Medical School) for critical reading of our manuscript. We thank those authors who we have neglected to cite owing to limitation on the number of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Nucera.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonello, Z., Nucera, C. Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAFV600E or wild-type BRAF. Oncogene 33, 5397–5404 (2014). https://doi.org/10.1038/onc.2013.544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.544

Keywords

This article is cited by

Search

Quick links