Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TRAF2 is an NF-κB-activating oncogene in epithelial cancers

Abstract

Aberrant nuclear factor (NF)-κB activation is frequently observed in human cancers. Genome characterization efforts have identified genetic alterations in multiple components of the NF-κB pathway, some of which have been shown to be essential for cancer initiation and tumor maintenance. Here, using patient tumors and cancer cell lines, we identify the NF-κB regulator, TRAF2 (tumor necrosis factor (TNF) receptor-associated factor 2), as an oncogene that is recurrently amplified and rearranged in 15% of human epithelial cancers. Suppression of TRAF2 in cancer cells harboring TRAF2 copy number gain inhibits proliferation, NF-κB activation, anchorage-independent growth and tumorigenesis. Cancer cells that are dependent on TRAF2 also require NF-κB for survival. The phosphorylation of TRAF2 at serine 11 is essential for the survival of cancer cells harboring TRAF2 amplification. Together, these observations identify TRAF2 as a frequently amplified oncogene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Baud V, Karin M . Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8: 33–40.

    Article  CAS  Google Scholar 

  2. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    Article  CAS  Google Scholar 

  3. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  Google Scholar 

  4. Karin M, Greten FR . NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759.

    Article  CAS  Google Scholar 

  5. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461–466.

    Article  CAS  Google Scholar 

  6. Aggarwal BB, Sung B . NF-kappaB in cancer: a matter of life and death. Cancer Discov 2011; 1: 469–471.

    Article  CAS  Google Scholar 

  7. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25–38.

    Article  CAS  Google Scholar 

  8. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009; 459: 717–721.

    Article  CAS  Google Scholar 

  9. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G . The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003; 424: 801–805.

    Article  CAS  Google Scholar 

  10. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008; 319: 1676–1679.

    Article  CAS  Google Scholar 

  11. Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M et al. The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 2009; 113: 4918–4921.

    Article  CAS  Google Scholar 

  12. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424: 797–801.

    Article  CAS  Google Scholar 

  13. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  Google Scholar 

  14. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  Google Scholar 

  15. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466: 869–873.

    Article  CAS  Google Scholar 

  16. Stratton MR, Campbell PJ, Futreal PA . The cancer genome. Nature 2009; 458: 719–724.

    Article  CAS  Google Scholar 

  17. Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res 2011; 21: 56–67.

    Article  CAS  Google Scholar 

  18. Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 2007; 129: 1065–1079.

    Article  CAS  Google Scholar 

  19. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C et al. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 2009; 462: 104–107.

    Article  CAS  Google Scholar 

  20. Basseres DS, Ebbs A, Levantini E, Baldwin AS . Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res 2010; 70: 3537–3546.

    Article  CAS  Google Scholar 

  21. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009; 462: 108–112.

    Article  CAS  Google Scholar 

  22. Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z et al. KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 2012; 21: 105–120.

    Article  CAS  Google Scholar 

  23. Starczynowski DT, Lockwood WW, Delehouzee S, Chari R, Wegrzyn J, Fuller M et al. TRAF6 is an amplified oncogene bridging the RAS and NF-kappaB pathways in human lung cancer. J Clin Invest 2011; 121: 4095–4105.

    Article  CAS  Google Scholar 

  24. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286–294.

    Article  CAS  Google Scholar 

  25. Au PY, Yeh WC . Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol 2007; 597: 32–47.

    Article  Google Scholar 

  26. Pomerantz JL, Baltimore D . NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 1999; 18: 6694–6704.

    Article  CAS  Google Scholar 

  27. Chen ZJ . Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7: 758–765.

    Article  CAS  Google Scholar 

  28. Thomas GS, Zhang L, Blackwell K, Habelhah H . Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res 2009; 69: 3665–3672.

    Article  CAS  Google Scholar 

  29. Wood KC, Konieczkowski DJ, Johannessen CM, Boehm JS, Tamayo P, Botvinnik OB et al. MicroSCALE screening reveals genetic modifiers of therapeutic response in melanoma. Sci Signal 2012; 5: rs4.

    Article  Google Scholar 

  30. Bivona TG, Hieronymus H, Parker J, Chang K, Taron M, Rosell R et al. FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR. Nature 2011; 471: 523–526.

    Article  CAS  Google Scholar 

  31. Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell 2009; 34: 461–472.

    Article  CAS  Google Scholar 

  32. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    Article  CAS  Google Scholar 

  33. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  34. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  35. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  36. Blackwell K, Zhang L, Thomas GS, Sun S, Nakano H, Habelhah H . TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol Cell Biol 2009; 29: 303–314.

    Article  CAS  Google Scholar 

  37. Karin M, Gallagher E . TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 2009; 228: 225–240.

    Article  CAS  Google Scholar 

  38. Li S, Wang L, Dorf ME . PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol Cell 2009; 33: 30–42.

    Article  CAS  Google Scholar 

  39. Staudt LM . Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2010; 2: a000109.

    Article  Google Scholar 

  40. Zhou AY, Shen RR, Kim E, Lock YJ, Xu M, Chen ZJ et al. IKKepsilon-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Cell Rep 2013; 3: 724–733.

    Article  CAS  Google Scholar 

  41. Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 2003; 114: 359–370.

    Article  CAS  Google Scholar 

  42. Fuerer C, Nusse R . Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PloS One 2010; 5: e9370.

    Article  Google Scholar 

  43. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Hahn lab and the Cichowski lab for thoughtful discussion, reagents and technical assistance. We also thank Hasem Habelhah for providing the pTRAF2 (Ser11) antibody. We further thank Shumei Wang, Anita Hawkins, Chengzeng Zhang and Cynthia Morton at the DFCI Cytogenetics Core for TRAF2 FISH analysis and discussion. This work was supported in part by R01 CA130988 (to WCH), a Ruth L. Kirschstein National Research Service Award F32 CA128265 (to RRS) and The Aid for Cancer Research (to RRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W C Hahn.

Ethics declarations

Competing interests

RB and WCH are consultants for Novartis. The remaining authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, R., Zhou, A., Kim, E. et al. TRAF2 is an NF-κB-activating oncogene in epithelial cancers. Oncogene 34, 209–216 (2015). https://doi.org/10.1038/onc.2013.543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.543

Keywords

This article is cited by

Search

Quick links