Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer

Abstract

Androgen and the androgen receptor (AR) have important roles in prostate cancer (PCa) development, and androgen ablation has been the main therapeutic option for the treatment of PCa. However, the transition mechanism from androgen-dependent to -independent PCa after androgen depletion remains unclear. We investigated the distinct roles of small leucine zipper protein (sLZIP) in proliferation of androgen-dependent and -independent PCa cells. Cyclin D3 is known to interact with AR and attenuates the ligand-dependent function of AR in PCa cells. sLZIP regulates the transcription of cyclin D3 by binding directly to the AP-1 region in the cyclin D3 promoter. sLZIP represses AR transcriptional activity by interaction with AR that is phosphorylated by cyclin D3/cyclin-dependent kinase11p58, leading to the suppression of androgen-dependent proliferation of PCa cells. The expression level of sLZIP is elevated in androgen-independent PCa cells and advanced human prostate tumors. Knockdown of endogenous sLZIP suppresses proliferation of androgen-independent PCa cells. LNCaP cells transformed to androgen-independent PCa cells exhibit increased expressions of sLZIP and cyclin D3. Tumor formation is inhibited in nude mouse xenografts from two androgen-independent PCa cells that are stably transfected with sh-sLZIP. Our findings indicate that sLZIP negatively regulates AR transactivation in androgen-dependent PCa cells and functions as a positive regulator in tumor progression of androgen-independent PCa. sLZIP contributes to the malignant phenotype of PCa and constitutes a novel therapeutic target for human PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nelson WG, De Marzo AM, Isaacs WB . Prostate cancer. N Engl J Med 2003; 349: 366–381.

    Article  CAS  PubMed  Google Scholar 

  2. Pienta KJ, Bradley D . Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 2006; 12: 1665–1671.

    Article  CAS  PubMed  Google Scholar 

  3. Tilley WD, Buchanan G, Hickey TE, Bentel JM . Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 1996; 2: 277–285.

    CAS  PubMed  Google Scholar 

  4. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–406.

    Article  CAS  PubMed  Google Scholar 

  5. Gelmann EP . Molecular biology of the androgen receptor. J Clin Oncol 2002; 20: 3001–3015.

    Article  CAS  PubMed  Google Scholar 

  6. Heinlein CA, Chang C . Androgen receptor in prostate cancer. Endocr Rev 2004; 25: 276–308.

    Article  CAS  PubMed  Google Scholar 

  7. Olshavsky NA, Groh EM, Comstock CE, Morey LM, Wang Y, Revelo MP et al. Cyclin D3 action in androgen receptor regulation and prostate cancer. Oncogene 2008; 27: 3111–3121.

    Article  CAS  PubMed  Google Scholar 

  8. Lin DY, Fang HI, Ma AH, Huang YS, Pu YS, Jenster G et al. Negative modulation of androgen receptor transcriptional activity by Daxx. Mol Cell Biol 2004; 24: 10529–10541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cui J, Yang Y, Zhang C, Hu P, Kan W, Bai X et al. FBI-1 functions as a novel AR co-repressor in prostate cancer cells. Cell Mol Life Sci 2011; 68: 1091–1103.

    Article  CAS  PubMed  Google Scholar 

  10. Herzinger T, Reed SI . Cyclin D3 is rate-limiting for the G1/S phase transition in fibroblasts. J Biol Chem 1998; 273: 14958–14961.

    Article  CAS  PubMed  Google Scholar 

  11. Hleb M, Murphy S, Wagner EF, Hanna NN, Sharma N, Park J et al. Evidence for cyclin D3 as a novel target of rapamycin in human T lymphocytes. J Biol Chem 2004; 279: 31948–31955.

    Article  CAS  PubMed  Google Scholar 

  12. Reisman D, Thompson EA . Glucocorticoid regulation of cyclin D3 gene transcription and mRNA stability in lymphoid cells. Mol Endocrinol 1995; 9: 1500–1509.

    CAS  PubMed  Google Scholar 

  13. Garcia-Morales P, Hernando E, Carrasco-Garcia E, Menendez-Gutierrez MP,, Saceda M, Martinez-Lacaci I . Cyclin D3 is down-regulated by rapamycin in HER-2-overexpressing breast cancer cells. Mol Cancer Ther 2006; 5: 2172–2181.

    Article  CAS  PubMed  Google Scholar 

  14. Zong H, Chi Y, Wang Y, Yang Y, Zhang L, Chen H et al. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol 2007; 27: 7125–7142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang H, Kim YS, Ko J . A novel isoform of human LZIP negatively regulates the transactivation of the glucocorticoid receptor. Mol Endocrinol 2009; 23: 1746–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang H, Jang SW, Ko J . Human sLZIP induces migration and invasion of cervical cancer cells via expression of matrix metalloproteinase-9. J Biol Chem 2011; 286: 42072–42081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jang SY, Jang SW, Ko J . Regulation of ADP-ribosylation factor 4 expression by small leucine zipper protein and involvement in breast cancer cell migration. Cancer Lett 2011; 314: 185–197.

    Article  PubMed  Google Scholar 

  18. Lu S, Tsai SY, Tsai MJ . Molecular mechanisms of androgen-independent growth of human prostate cancer LNCaP-AI cells. Endocrinology 1999; 140: 5054–5059.

    Article  CAS  PubMed  Google Scholar 

  19. Igawa T, Lin FF, Lee MS, Karan D, Batra SK, Lin MF . Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate 2002; 50: 222–235.

    Article  CAS  PubMed  Google Scholar 

  20. Galderisi U, Jori FP, Giordano A . Cell cycle regulation and neural differentiation. Oncogene 2003; 22: 5208–5219.

    Article  CAS  PubMed  Google Scholar 

  21. Heemers HV, Tindall DJ . Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28: 778–808.

    Article  CAS  PubMed  Google Scholar 

  22. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM et al. LNCaP model of human prostatic carcinoma. Cancer Res 1983; 43: 1809–1818.

    CAS  PubMed  Google Scholar 

  23. Compagno D, Merle C, Morin A, Gilbert C, Mathieu JR, Bozec A et al. SIRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas. PLoS One 2007; 2: e1006.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Article  PubMed  Google Scholar 

  25. Li Y, Wang L, Zhang M, Melamed J, Liu X, Reiter R et al. LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion. Cancer Res 2009; 69: 3332–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea University Grant and the Basic Research Laboratory Program (2009–0087099) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ko.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kim, J., Jang, SW. et al. The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer. Oncogene 34, 226–236 (2015). https://doi.org/10.1038/onc.2013.538

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.538

Keywords

This article is cited by

Search

Quick links