Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus

Abstract

BCL6 is a zinc-finger transcriptional repressor, which is highly expressed in germinal centre B-cells and is essential for germinal centre formation and T-dependent antibody responses. Constitutive BCL6 expression is sufficient to produce lymphomas in mice. Deregulated expression of BCL6 due to chromosomal rearrangements, mutations of a negative autoregulatory site in the BCL6 promoter region and aberrant post-translational modifications have been detected in a number of human lymphomas. Tight lineage and temporal regulation of BCL6 is, therefore, required for normal immunity, and abnormal regulation occurs in lymphomas. CCCTC-binding factor (CTCF) is a multi-functional chromatin regulator, which has recently been shown to bind in a methylation-sensitive manner to sites within the BCL6 first intron. We demonstrate a novel CTCF-binding site in BCL6 exon1A within a potential CpG island, which is unmethylated both in cell lines and in primary lymphoma samples. CTCF binding, which was found in BCL6-expressing cell lines, correlated with the presence of histone variant H2A.Z and active histone marks, suggesting that CTCF induces chromatin modification at a transcriptionally active BCL6 locus. CTCF binding to exon1A was required to maintain BCL6 expression in germinal centre cells by avoiding BCL6-negative autoregulation. Silencing of CTCF in BCL6-expressing cells reduced BCL6 mRNA and protein expression, which is sufficient to induce B-cell terminal differentiation toward plasma cells. Moreover, lack of CTCF binding to exon1A shifts the BCL6 local chromatin from an active to a repressive state. This work demonstrates that, in contexts in which BCL6 is expressed, CTCF binding to BCL6 exon1A associates with epigenetic modifications indicative of transcriptionally open chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ye BH, Cattoretti G, Shen Q, Zhang J, Hawe N, de Waard R et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet 1997; 16: 161–170.

    Article  CAS  Google Scholar 

  2. Basso K, Dalla-Favera R . Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev 2012; 247: 172–183.

    Article  Google Scholar 

  3. Fearon DT, Manders PM, Wagner SD . Bcl-6 uncouples B lymphocyte proliferation from differentiation. Adv Exp Med Biol 2002; 512: 21–28.

    Article  Google Scholar 

  4. Reljic R, Wagner SD, Peakman LJ, Fearon DT . Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J Exp Med 2000; 192: 1841–1848.

    Article  CAS  Google Scholar 

  5. Basso K, Dalla-Favera R . BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol 2010; 105: 193–210.

    Article  CAS  Google Scholar 

  6. Wagner SD, Ahearne M, Ko Ferrigno P . The role of BCL6 in lymphomas and routes to therapy. Br J Haematol 2011; 152: 3–12.

    Article  CAS  Google Scholar 

  7. Cattoretti G, Pasqualucci L, Ballon G, Tam W, Nandula SV, Shen Q et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 2005; 7: 445–455.

    Article  CAS  Google Scholar 

  8. Pasqualucci L, Migliazza A, Basso K, Houldsworth J, Chaganti RS, Dalla-Favera R . Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 2003; 101: 2914–2923.

    Article  CAS  Google Scholar 

  9. Wang X, Li Z, Naganuma A, Ye BH . Negative autoregulation of BCL-6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc Natl Acad Sci USA 2002; 99: 15018–15023.

    Article  CAS  Google Scholar 

  10. Scheeren FA, Naspetti M, Diehl S, Schotte R, Nagasawa M, Wijnands E et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol 2005; 6: 303–313.

    Article  CAS  Google Scholar 

  11. Saito M, Gao J, Basso K, Kitagawa Y, Smith PM, Bhagat G et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 2007; 12: 280–292.

    Article  CAS  Google Scholar 

  12. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 2012; 481: 90–93.

    Article  CAS  Google Scholar 

  13. Niu H, Ye BH, Dalla-Favera Rk . Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev 1998; 12: 1953–1961.

    Article  CAS  Google Scholar 

  14. Bereshchenko OR, Gu W, Dalla-Favera R . Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 2002; 32: 606–613.

    Article  CAS  Google Scholar 

  15. Papadopoulou V, Postigo A, Sanchez-Tillo E, Porter AC, Wagner SD . ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem J 2010; 427: 541–550.

    Article  CAS  Google Scholar 

  16. Batlle A, Papadopoulou V, Gomes AR, Willimott S, Melo JV, Naresh K et al. CD40 and B-cell receptor signalling induce MAPK family members that can either induce or repress Bcl-6 expression. Mol Immunol 2009; 46: 1727–1735.

    Article  CAS  Google Scholar 

  17. Lai AY, Fatemi M, Dhasarathy A, Malone C, Sobol SE, Geigerman C et al. DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med 2010; 207: 1939–1950.

    Article  CAS  Google Scholar 

  18. Ohlsson R, Lobanenkov V, Klenova E . Does CTCF mediate between nuclear organization and gene expression? Bioessays 2010; 32: 37–50.

    Article  CAS  Google Scholar 

  19. Phillips JE, Corces VG . CTCF: master weaver of the genome. Cell 2009; 137: 1194–1211.

    Article  Google Scholar 

  20. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 2007; 128: 1231–1245.

    Article  CAS  Google Scholar 

  21. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008; 133: 1106–1117.

    Article  CAS  Google Scholar 

  22. Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res 2012; 22: 1680–1688.

    Article  CAS  Google Scholar 

  23. Lee BK, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res 2012; 22: 9–24.

    Article  CAS  Google Scholar 

  24. Herold M, Bartkuhn M, Renkawitz R . CTCF: insights into insulator function during development. Development (Cambridge, England) 2012; 139: 1045–1057.

    Article  CAS  Google Scholar 

  25. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129: 823–837.

    Article  CAS  Google Scholar 

  26. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K . Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 2009; 19: 24–32.

    Article  CAS  Google Scholar 

  27. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 2008; 132: 422–433.

    Article  CAS  Google Scholar 

  28. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008; 451: 796–801.

    Article  CAS  Google Scholar 

  29. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G . CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 2004; 13: 291–298.

    Article  CAS  Google Scholar 

  30. van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L et al. CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics & chromatin 2010; 3: 19.

    Article  Google Scholar 

  31. Filippova GN . Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 2008; 80: 337–360.

    Article  CAS  Google Scholar 

  32. Klenova EM, Nicolas RH, Paterson HF, Carne AF, Heath CM, Goodwin GH et al. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol Cell Biol 1993; 13: 7612–7624.

    Article  CAS  Google Scholar 

  33. De La Rosa-Velazquez IA, Rincon-Arano H, Benitez-Bribiesca L, Recillas-Targa F . Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res 2007; 67: 2577–2585.

    Article  CAS  Google Scholar 

  34. Soto-Reyes E, Recillas-Targa F . Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines. Oncogene 2010; 29: 2217–2227.

    Article  CAS  Google Scholar 

  35. Witcher M, Emerson BM . Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell 2009; 34: 271–284.

    Article  CAS  Google Scholar 

  36. Renaud S, Loukinov D, Bosman FT, Lobanenkov V, Benhattar J . CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res 2005; 33: 6850–6860.

    Article  CAS  Google Scholar 

  37. Bernardin F, Collyn-d'Hooghe M, Quief S, Bastard C, Leprince D, Kerckaert JP . Small deletions occur in highly conserved regions of the LAZ3/BCL6 major translocation cluster in one case of non-Hodgkin’s lymphoma without 3q27 translocation. Oncogene 1997; 14: 849–855.

    Article  CAS  Google Scholar 

  38. Bao L, Zhou M, Cui Y . CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators. Nucleic Acids Res 2008; 36: D83–D87.

    Article  CAS  Google Scholar 

  39. Ziebarth JD, Bhattacharya A, Cui Y . CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res 2013; 41: D188–D194.

    Article  CAS  Google Scholar 

  40. Kikuchi M, Miki T, Kumagai T, Fukuda T, Kamiyama R, Miyasaka N et al. Identification of negative regulatory regions within the first exon and intron of the BCL6 gene. Oncogene 2000; 19: 4941–4945.

    Article  CAS  Google Scholar 

  41. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    Article  CAS  Google Scholar 

  42. Sharma S, Kelly TK, Jones PA . Epigenetics in cancer. Carcinogenesis 2010; 31: 27–36.

    Article  CAS  Google Scholar 

  43. Cattoretti G, Chang CC, Cechova K, Zhang J, Ye BH, Falini B et al. BCL-6 protein is expressed in germinal-center B cells. Blood 1995; 86: 45–53.

    CAS  Google Scholar 

  44. Bottardi S, Aumont A, Grosveld F, Milot E . Developmental stage-specific epigenetic control of human beta-globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood 2003; 102: 3989–3997.

    Article  CAS  Google Scholar 

  45. Szutorisz H, Canzonetta C, Georgiou A, Chow CM, Tora L, Dillon N . Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol Cell Biol 2005; 25: 1804–1820.

    Article  CAS  Google Scholar 

  46. Yoon B, Herman H, Hu B, Park YJ, Lindroth A, Bell A et al. Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 2005; 25: 11184–11190.

    Article  CAS  Google Scholar 

  47. Renaud S, Pugacheva EM, Delgado MD, Braunschweig R, Abdullaev Z, Loukinov D et al. Expression of the CTCF-paralogous cancer-testis gene, brother of the regulator of imprinted sites (BORIS), is regulated by three alternative promoters modulated by CpG methylation and by CTCF and p53 transcription factors. Nucleic Acids Res 2007; 35: 7372–7388.

    Article  CAS  Google Scholar 

  48. Fitzpatrick GV, Pugacheva EM, Shin JY, Abdullaev Z, Yang Y, Khatod K et al. Allele-specific binding of CTCF to the multipartite imprinting control region KvDMR1. Mol Cell Biol 2007; 27: 2636–2647.

    Article  CAS  Google Scholar 

  49. Vatolin S, Abdullaev Z, Pack SD, Flanagan PT, Custer M, Loukinov DI et al. Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res 2005; 65: 7751–7762.

    Article  CAS  Google Scholar 

  50. Hong JA, Kang Y, Abdullaev Z, Flanagan PT, Pack SD, Fischette MR et al. Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Res 2005; 65: 7763–7774.

    Article  CAS  Google Scholar 

  51. Ramachandrareddy H, Bouska A, Shen Y, Ji M, Rizzino A, Chan WC et al. BCL6 promoter interacts with far upstream sequences with greatly enhanced activating histone modifications in germinal center B cells. Proc Natl Acad Sci USA 2010; 107: 11930–11935.

    Article  CAS  Google Scholar 

  52. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39: 457–466.

    Article  CAS  Google Scholar 

  53. Kwon MJ, Kim SS, Choi YL, Jung HS, Balch C, Kim SH et al. Derepression of CLDN3 and CLDN4 during ovarian tumorigenesis is associated with loss of repressive histone modifications. Carcinogenesis 2010; 31: 974–983.

    Article  CAS  Google Scholar 

  54. Ishihara K, Oshimura M, Nakao M . CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell 2006; 23: 733–742.

    Article  CAS  Google Scholar 

  55. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  Google Scholar 

  56. Torrano V, Chernukhin I, Docquier F, D'Arcy V, Leon J, Klenova E et al. CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells. J Biol Chem 2005; 280: 28152–28161.

    Article  CAS  Google Scholar 

  57. Torrano V, Navascues J, Docquier F, Zhang R, Burke LJ, Chernukhin I et al. Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 2006; 119: 1746–1759.

    Article  CAS  Google Scholar 

  58. Rosa-Garrido M, Ceballos L, Alonso-Lecue P, Abraira C, Delgado MD, Gandarillas A . A cell cycle role for the epigenetic factor CTCF-L/BORIS. PLoS One 2012; 7: e39371.

    Article  CAS  Google Scholar 

  59. Pugacheva EM, Tiwari VK, Abdullaev Z, Vostrov AA, Flanagan PT, Quitschke WW et al. Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation. Hum Mol Genet 2005; 14: 953–965.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Elena Klenova and Rainer Renkawitz for CTCF expression vectors, Miguel Angel Piris and Noemi Nagy for cell lines and Javier León for useful comments on the manuscript. We are grateful to the Department of Hematology of Hospital U. Marques de Valdecilla (Santander) for help with patient recruitment. Funding for this work was provided by Instituto de Salud Carlos III grants PI11/00397 (Fondo Investigaciones Sanitarias) and RETIC (Red Tematica de Investigacion Cooperativa en Cancer) RD06/0020/0017 and RD12/0036/0033. AB was supported by a López Albo fellowship (IFIMAV, Spain), MRG by a PhD fellowship from the University of Cantabria and VT by the Lady Tata Memorial Trust. Part of this work is in AB’s PhD dissertation (split PhD Programme between Imperial College London and the University of Cantabria).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S D Wagner or M D Delgado.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batlle-López, A., Cortiguera, M., Rosa-Garrido, M. et al. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus. Oncogene 34, 246–256 (2015). https://doi.org/10.1038/onc.2013.535

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.535

Keywords

This article is cited by

Search

Quick links