Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma

Abstract

Mice in which lung epithelial cells can be induced to express an oncogenic KrasG12D develop lung adenocarcinomas in a manner analogous to humans. A myriad of genetic changes accompany lung adenocarcinomas, many of which are poorly understood. To get a comprehensive understanding of both the transcriptional and post-transcriptional changes that accompany lung adenocarcinomas, we took an omics approach in profiling both the coding genes and the non-coding small RNAs in an induced mouse model of lung adenocarcinoma. RNAseq transcriptome analysis of KrasG12D tumors from F1 hybrid mice revealed features specific to tumor samples. This includes the repression of a network of GTPase-related genes (Prkg1, Gnao1 and Rgs9) in tumor samples and an enrichment of Apobec1-mediated cytosine to uridine RNA editing. Furthermore, analysis of known single-nucleotide polymorphisms revealed not only a change in expression of Cd22 but also that its expression became allele specific in tumors. The most salient finding, however, came from small RNA sequencing of the tumor samples, which revealed that a cluster of 53 microRNAs and mRNAs at the Dlk1-Dio3 locus on mouse chromosome 12qF1 was markedly and consistently increased in tumors. Activation of this locus occurred specifically in sorted tumor-originating cancer cells. Interestingly, the 12qF1 RNAs were repressed in cultured KrasG12D tumor cells but reactivated when transplanted in vivo. These microRNAs have been implicated in stem cell pleuripotency and proteins targeted by these microRNAs are involved in key pathways in cancer as well as embryogenesis. Taken together, our results strongly imply that these microRNAs represent key targets in unraveling the mechanism of lung oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol 2000; 10: 147–154.

    Article  CAS  Google Scholar 

  2. Simon MA, Dodson GS, Rubin GM . An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 1993; 73: 169–177.

    Article  CAS  Google Scholar 

  3. Rogge RD, Karlovich CA, Banerjee U . Genetic dissection of a neurodevelopmental pathway: son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 1991; 64: 39–48.

    Article  CAS  Google Scholar 

  4. Al-Mulla F, Milner-White EJ, Going JJ, Birnie GD . Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression. J Pathol 1999; 187: 433–438.

    Article  CAS  Google Scholar 

  5. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 2008; 14: 5731–5734.

    Article  CAS  Google Scholar 

  6. Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G, Barbacid M . Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 1984; 223: 661–664.

    Article  CAS  Google Scholar 

  7. Sun S, Schiller JH, Gazdar AF . Lung cancer in never smokers—a different disease. Nat Rev Cancer 2007; 7: 778–790.

    Article  CAS  Google Scholar 

  8. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001; 410: 1111–1116.

    Article  CAS  Google Scholar 

  9. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    Article  CAS  Google Scholar 

  10. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012; 22: 436–445.

    Article  CAS  Google Scholar 

  11. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466: 869–873.

    Article  CAS  Google Scholar 

  12. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  Google Scholar 

  13. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65: 9628–9632.

    Article  CAS  Google Scholar 

  14. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  Google Scholar 

  15. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131: 1190–1203.

    Article  CAS  Google Scholar 

  16. Lee S, Kang J, Cho M, Seo E, Choi H, Kim E et al. Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches. Int J Oncol 2009; 34: 161–172.

    CAS  Google Scholar 

  17. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 2005; 37: 48–55.

    Article  CAS  Google Scholar 

  18. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39: D945–D950.

    Article  CAS  Google Scholar 

  19. Chess A . Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet 2012; 13: 421–428.

    Article  CAS  Google Scholar 

  20. Mita H, Toyota M, Aoki F, Akashi H, Maruyama R, Sasaki Y et al. A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth. BMC Cancer 2009; 9: 198.

    Article  Google Scholar 

  21. Danecek P, Nellaker C, McIntyre RE, Buendia-Buendia JE, Bumpstead S, Ponting CP et al. High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol 2012; 13: r26.

    Article  Google Scholar 

  22. Rosenberg BR, Hamilton CE, Mwangi MM, Dewell S, Papavasiliou FN . Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat Struct Mol Biol 2011; 18: 230–236.

    Article  CAS  Google Scholar 

  23. Hagan JP, O'Neill BL, Stewart CL, Kozlov SV, Croce CM . At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 2009; 4: e4352.

    Article  Google Scholar 

  24. Edwards CA, Ferguson-Smith AC . Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 2007; 19: 281–289.

    Article  CAS  Google Scholar 

  25. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465: 175–181.

    Article  CAS  Google Scholar 

  26. Bhaskaran M, Wang Y, Zhang H, Weng T, Baviskar P, Guo Y et al. MicroRNA-127 modulates fetal lung development. Physiol Genomics 2009; 37: 268–278.

    Article  CAS  Google Scholar 

  27. Takahashi N, Okamoto A, Kobayashi R, Shirai M, Obata Y, Ogawa H et al. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum Mol Genet 2009; 18: 1879–1888.

    Article  CAS  Google Scholar 

  28. Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X . Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 2006; 103: 2208–2213.

    Article  CAS  Google Scholar 

  29. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 2700–2704.

    Article  CAS  Google Scholar 

  30. Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010; 120: 1298–1309.

    Article  CAS  Google Scholar 

  31. Benetatos L, Voulgaris E, Vartholomatos G . DLK1-MEG3 imprinted domain microRNAs in cancer biology. Crit Rev Eukaryot Gene Expr 2012; 22: 1–15.

    Article  CAS  Google Scholar 

  32. Luk JM, Burchard J, Zhang C, Liu AM, Wong KF, Shek FH et al. DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J Biol Chem 2011; 286: 30706–30713.

    Article  CAS  Google Scholar 

  33. Haller F, von Heydebreck A, Zhang JD, Gunawan B, Langer C, Ramadori G et al. Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol 2010; 220: 71–86.

    Article  CAS  Google Scholar 

  34. Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008; 3: e2141.

    Article  Google Scholar 

  35. Castilla MA, Moreno-Bueno G, Romero-Perez L, Van De Vijver K, Biscuola M, Lopez-Garcia MA et al. Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 2011; 223: 72–80.

    Article  CAS  Google Scholar 

  36. Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundstrom J, Ristamaki R et al. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer 2012; 51: 1–9.

    Article  CAS  Google Scholar 

  37. Ricketts SL, Carter JC, Coleman WB . Identification of three 11p11.2 candidate liver tumor suppressors through analysis of known human genes. Mol Carcinog 2003; 36: 90–99.

    Article  CAS  Google Scholar 

  38. Kaneda A, Kaminishi M, Sugimura T, Ushijima T . Decreased expression of the seven ARP2/3 complex genes in human gastric cancers. Cancer Lett 2004; 212: 203–210.

    Article  CAS  Google Scholar 

  39. Kim JH, Kim TW, Kim SJ . Downregulation of ARFGEF1 and CAMK2B by promoter hypermethylation in breast cancer cells. BMB Rep 2011; 44: 523–528.

    Article  CAS  Google Scholar 

  40. Lee J, Zhou P . Cullins and cancer. Genes Cancer 2010; 1: 690–699.

    Article  CAS  Google Scholar 

  41. Son JW, Kim YJ, Cho HM, Lee SY, Lee SM, Kang JK et al. Promoter hypermethylation of the CFTR gene and clinical/pathological features associated with non-small cell lung cancer. Respirology 2011; 16: 1203–1209.

    Article  Google Scholar 

  42. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012; 150: 1121–1134.

    Article  CAS  Google Scholar 

  43. Ma Y, Fiering S, Black C, Liu X, Yuan Z, Memoli VA et al. Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc Natl Acad Sci USA 2007; 104: 4089–4094.

    Article  CAS  Google Scholar 

  44. Uckun FM, Goodman P, Ma H, Dibirdik I, Qazi S . CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci USA 2010; 107: 16852–16857.

    Article  CAS  Google Scholar 

  45. Leung SO, Goldenberg DM, Dion AS, Pellegrini MC, Shevitz J, Shih LB et al. Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol Immunol 1995; 32: 1413–1427.

    Article  CAS  Google Scholar 

  46. Tuscano JM, Kato J, Pearson D, Xiong C, Newell L, Ma Y et al. The CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy. Cancer Res 2012; 72: 5556–5565.

    Article  CAS  Google Scholar 

  47. Garcia-Marcos M, Ghosh P, Farquhar MG . Molecular basis of a novel oncogenic mutation in GNAO1. Oncogene 2011; 30: 2691–2696.

    Article  CAS  Google Scholar 

  48. Proudfoot NJ . Ending the message: poly(A) signals then and now. Genes Dev 2011; 25: 1770–1782.

    Article  CAS  Google Scholar 

  49. Yamanaka S, Balestra ME, Ferrell LD, Fan J, Arnold KS, Taylor S et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci USA 1995; 92: 8483–8487.

    Article  CAS  Google Scholar 

  50. Burns MB, Temiz NA, Harris RS . Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 2013; 45: 977–983.

    Article  CAS  Google Scholar 

  51. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 2013; 45: 970–976.

    Article  CAS  Google Scholar 

  52. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012; 149: 979–993.

    Article  CAS  Google Scholar 

  53. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  Google Scholar 

  54. DuPage M, Dooley AL, Jacks T . Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 2009; 4: 1064–1072.

    Article  CAS  Google Scholar 

  55. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  Google Scholar 

  56. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–578.

    Article  CAS  Google Scholar 

  57. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511–515.

    Article  CAS  Google Scholar 

  58. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  Google Scholar 

  59. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  Google Scholar 

  60. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  Google Scholar 

  61. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  62. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  Google Scholar 

  63. Sekita Y, Wagatsuma H, Irie M, Kobayashi S, Kohda T, Matsuda J et al. Aberrant regulation of imprinted gene expression in Gtl2lacZ mice. Cytogenet Genome Res 2006; 113: 223–229.

    Article  CAS  Google Scholar 

  64. Betel D, Wilson M, Gabow A, Marks DS, Sander C . The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36: D149–D153.

    Article  CAS  Google Scholar 

  65. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PNV is a Banting Postdoctoral Fellow supported by the Canadian Institutes of Health Research. MMW is funded by a Baxter Foundation Scholar Award and C-HC is supported by a Stanford Dean’s Fellowship. We thank Julien Sage for SCLC samples. This work was supported by grant R01 DK078424 (MAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Kay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdmanis, P., Roy-Chaudhuri, B., Kim, H. et al. Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma. Oncogene 34, 94–103 (2015). https://doi.org/10.1038/onc.2013.523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.523

Keywords

This article is cited by

Search

Quick links