Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer

Abstract

Cancer metastasis is a lethal problem that claims the lives of over 90% of cancer patients. In this study, we have investigated metastatic potential of cancer stem cells (CSCs) isolated from mammary tumors of a Brca1-mutant mouse model. Our data indicated that CSCs, which are enriched in CD24+CD29+/CD49f+ cell population, displayed much higher migration ability than CD24CD29/CD49f cells in tissue culture and enhanced metastatic potential in allograft-nude mice. CD24+CD29+ cells maintained the ability to differentiate and reconstitute heterogeneity in the metastatic tumors whereas CD24CD29 cells could not. Corresponding to their enhanced metastatic ability, CD24+CD29+ cells exhibited features of the epithelial to mesenchymal transition. Finally, using short hairpin RNA to knock down CD29 and/or CD49f in metastatic cancer cells, we demonstrated that while acute knockdown of CD29 or CD49f alone slightly decreased cell migration ability, knockdown of both genes generated a profound effect to block their migration, revealing an overlapping, yet critical function of both genes in the migration of CSCs. Our findings indicate that in addition to serving as markers of CSCs, CD29 and CD49f may also serve as potential therapeutic targets for cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics 2010 CA Cancer J Clin 2010; 60: 277–300.

    Article  Google Scholar 

  2. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  Google Scholar 

  3. Bernards R, Weinberg RA . A progression puzzle. Nature 2002; 418: 823.

    Article  CAS  Google Scholar 

  4. Wright JA, Egan SE, Greenberg AH . Genetic regulation of metastatic progression. Anticancer Res 1990; 10: 1247–1255.

    CAS  PubMed  Google Scholar 

  5. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    Article  CAS  Google Scholar 

  6. Nicolson GL . Paracrine/autocrine growth mechanisms in tumor metastasis. Oncol Res 1992; 4: 389–399.

    CAS  PubMed  Google Scholar 

  7. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al. Systemic spread is an early step in breast cancer. Cancer Cell 2008; 13: 58–68.

    Article  Google Scholar 

  8. Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H . Seeding and propagation of untransformed mouse mammary cells in the lung. Science 2008; 321: 1841–1844.

    Article  CAS  Google Scholar 

  9. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100: 3983–3988.

    Article  CAS  Google Scholar 

  10. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  Google Scholar 

  11. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    Article  CAS  Google Scholar 

  12. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  CAS  Google Scholar 

  13. Baccelli I, Trumpp A . The evolving concept of cancer and metastasis stem cells. J Cell Biol 2012; 198: 281–293.

    Article  CAS  Google Scholar 

  14. Song LL, Miele L . Cancer stem cells—an old idea that's new again: implications for the diagnosis and treatment of breast cancer. Expert Opin Biol Ther 2007; 7: 431–438.

    Article  CAS  Google Scholar 

  15. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  Google Scholar 

  16. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007; 356: 217–226.

    Article  CAS  Google Scholar 

  17. Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 2010; 107: 18115–18120.

    Article  CAS  Google Scholar 

  18. Dave B, Mittal V, Tan NM, Chang JC . Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res 2012; 14: 202.

    Article  Google Scholar 

  19. Foroni C, Broggini M, Generali D, Damia G . Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 2012; 38: 689–697.

    Article  CAS  Google Scholar 

  20. Hale JS, Li M, Lathia JD . The malignant social network: cell-cell adhesion and communication in cancer stem cells. Cell Adh Migr 2012; 6: 346–355.

    Article  Google Scholar 

  21. Lathia JD, Heddleston JM, Venere M, Rich JN . Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 2011; 8: 482–485.

    Article  CAS  Google Scholar 

  22. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71.

    Article  CAS  Google Scholar 

  23. Alberg AJ, Helzlsouer KJ . Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol 1997; 9: 505–511.

    Article  CAS  Google Scholar 

  24. Zhang J, Powell SN . The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 2005; 3: 531–539.

    Article  CAS  Google Scholar 

  25. Brody LC, Biesecker BB . Breast cancer susceptibility genes. BRCA1 and BRCA2. Medicine (Baltimore) 1998; 77: 208–226.

    Article  CAS  Google Scholar 

  26. Eccles DM, Pichert G . Familial non-BRCA1/BRCA2-associated breast cancer. Lancet Oncol 2005; 6: 705–711.

    Article  CAS  Google Scholar 

  27. Hu Y . BRCA1, hormone, and tissue-specific tumor suppression. Int J Biol Sci 2009; 5: 20–27.

    Article  CAS  Google Scholar 

  28. Deng CX . Tumor formation in Brca1 conditional mutant mice. Environ Mol Mutagen 2002; 39: 171–177.

    Article  CAS  Google Scholar 

  29. Deng CX . BRCA1: cell cycle checkpoint, genetic instability, DNA damage response, and cancer evolution. Nucleic Acids Res 2006; 34: 1416–1426.

    Article  CAS  Google Scholar 

  30. Diaz-Cruz ES, Cabrera MC, Nakles R, Rutstein BH, Furth PA . BRCA1 deficient mouse models to study pathogenesis and therapy of triple negative breast cancer. Breast Dis 2010; 32: 85–97.

    Article  Google Scholar 

  31. Roy R, Chun J, Powell SN . BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 2012; 12: 68–78.

    Article  CAS  Google Scholar 

  32. Venkitaraman AR . Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002; 108: 171–182.

    Article  CAS  Google Scholar 

  33. Drost RM, Jonkers J . Preclinical mouse models for BRCA1-associated breast cancer. Br J Cancer 2009; 101: 1651–1657.

    Article  CAS  Google Scholar 

  34. Deng CX, Wang RH . Roles of BRCA1 in DNA damage repair: a link between development and cancer. Hum Mol Genet 2003; 12: R113–R123.

    Article  CAS  Google Scholar 

  35. Deng CX, Brodie SG . Roles of BRCA1 and its interacting proteins. Bioessays 2000; 22: 728–737.

    Article  CAS  Google Scholar 

  36. Dine J, Deng CX . Mouse models of BRCA1 and their application to breast cancer research. Cancer Metast Rev 2012; 32: 25–37.

    Article  Google Scholar 

  37. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  Google Scholar 

  38. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  Google Scholar 

  39. Vassilopoulos A, Wang RH, Petrovas C, Ambrozak D, Koup R, Deng CX . Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. Int J Biol Sci 2008; 4: 133–142.

    Article  CAS  Google Scholar 

  40. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    Article  CAS  Google Scholar 

  41. Gritsenko PG, Ilina O, Friedl P . Interstitial guidance of cancer invasion. J Pathol 2012; 226: 185–199.

    Article  CAS  Google Scholar 

  42. Lanza DG, Ma J, Guest I, Uk-Lim C, Glinskii A, Glinsky G et al. Tumor-derived mesenchymal stem cells and orthotopic site increase the tumor initiation potential of putative mouse mammary cancer stem cells derived from MMTV-PyMT mice. Tumour Biol 2012; 33: 1997–2005.

    Article  Google Scholar 

  43. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 2008; 68: 4674–4682.

    Article  CAS  Google Scholar 

  44. Lahlou H, Muller WJ . Beta1-integrins signaling and mammary tumor progression in transgenic mouse models: implications for human breast cancer. Breast Cancer Res 2011; 13: 229.

    Article  CAS  Google Scholar 

  45. Ali HR, Dawson SJ, Blows FM, Provenzano E, Pharoah PD, Caldas C . Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance. Breast Cancer Res 2011; 13: R118.

    Article  CAS  Google Scholar 

  46. Lee EC, Lotz MM, Steele GD Jr, Mercurio AM . The integrin alpha 6 beta 4 is a laminin receptor. J Cell Biol 1992; 117: 671–678.

    Article  CAS  Google Scholar 

  47. Nielsen PK, Yamada Y . Identification of cell-binding sites on the Laminin alpha 5 N-terminal domain by site-directed mutagenesis. J Biol Chem 2001; 276: 10906–10912.

    Article  CAS  Google Scholar 

  48. Niessen CM, Cremona O, Daams H, Ferraresi S, Sonnenberg A, Marchisio PC . Expression of the integrin alpha 6 beta 4 in peripheral nerves: localization in Schwann and perineural cells and different variants of the beta 4 subunit. J Cell Sci 1994; 107 (Pt 2): 543–552.

    CAS  PubMed  Google Scholar 

  49. Sonnenberg A, Gehlsen KR, Aumailley M, Timpl R . Isolation of alpha 6 beta 1 integrins from platelets and adherent cells by affinity chromatography on mouse laminin fragment E8 and human laminin pepsin fragment. Exp Cell Res 1991; 197: 234–244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Deng lab for critical reading of the manuscript. This work was supported by the Intramural Research Program of the National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-X Deng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilopoulos, A., Chisholm, C., Lahusen, T. et al. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene 33, 5477–5482 (2014). https://doi.org/10.1038/onc.2013.516

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.516

Keywords

This article is cited by

Search

Quick links