Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selective roles of E2Fs for ErbB2- and Myc-mediated mammary tumorigenesis

Abstract

Previous studies have demonstrated that cyclin D1, an upstream regulator of the Rb/E2F pathway, is an essential component of the ErbB2/Ras (but not the Wnt/Myc) oncogenic pathway in the mammary epithelium. However, the role of specific E2fs for ErbB2/Ras-mediated mammary tumorigenesis remains unknown. Here, we show that in the majority of mouse and human primary mammary carcinomas with ErbB2/HER2 overexpression, E2f3a is up-regulated, raising the possibility that E2F3a is a critical effector of the ErbB2 oncogenic signaling pathway in the mammary gland. We examined the consequence of ablating individual E2fs in mice on ErbB2-triggered mammary tumorigenesis in comparison to a comparable Myc-driven mammary tumor model. We found that loss of E2f1 or E2f3 led to a significant delay in tumor onset in both oncogenic models, whereas loss of E2f2 accelerated mammary tumorigenesis driven by Myc-overexpression. Furthermore, southern blot analysis of final tumors derived from conditionally deleted E2f3−/loxP mammary glands revealed that there is a selection against E2f3−/− cells from developing mammary carcinomas, and that such selection pressure is higher in the presence of ErbB2 activation than in the presence of Myc activation. Taken together, our data suggest oncogenic activities of E2F1 and E2F3 in ErbB2- or Myc-triggered mammary tumorigenesis, and a tumor suppressor role of E2F2 in Myc-mediated mammary tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. DeGregori J . The Rb network. J Cell Sci 2004; 117: 3411–3413.

    Article  CAS  PubMed  Google Scholar 

  3. Dyson N . The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  4. Nevins JR . Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ 1998; 9: 585–593.

    CAS  PubMed  Google Scholar 

  5. Dimova DK, Dyson NJ . The E2F transcriptional network: old acquaintances with new faces. Oncogene 2005; 24: 2810–2826.

    Article  CAS  PubMed  Google Scholar 

  6. Trimarchi JM, Lees JA . Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002; 3: 11–20.

    Article  CAS  PubMed  Google Scholar 

  7. Bracken AP, Ciro M, Cocito A, Helin K . E2F target genes: unraveling the biology. Trends Biochem Sci 2004; 29: 409–417.

    Article  CAS  PubMed  Google Scholar 

  8. DeGregori J, Johnson DG . Distinct and overlapping roles for e2f family members in transcription, proliferation and apoptosis. Curr Mol Med 2006; 6: 739–748.

    CAS  PubMed  Google Scholar 

  9. He Y, Cress WD . E2F-3B is a physiological target of cyclin A. J Biol Chem 2002; 277: 23493–23499.

    Article  CAS  PubMed  Google Scholar 

  10. Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol 2000; 20: 3626–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 2001; 414: 457–462.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma N, Timmers C, Trikha P, Saavedra HI, Obery A, Leone G . Control of the p53-p21CIP1 Axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation. J Biol Chem 2006; 281: 36124–36131.

    Article  CAS  PubMed  Google Scholar 

  13. Nevins JR . The Rb/E2F pathway and cancer. Hum Mol Genet 2001; 10: 699–703.

    Article  CAS  PubMed  Google Scholar 

  14. Abate-Shen C, Shen MM . Molecular genetics of prostate cancer. Genes Dev 2000; 14: 2410–2434.

    Article  CAS  PubMed  Google Scholar 

  15. Maddison LA, Sutherland BW, Barrios RJ, Greenberg NM . Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 2004; 64: 6018–6025.

    Article  CAS  PubMed  Google Scholar 

  16. Simin K, Wu H, Lu L, Pinkel D, Albertson D, Cardiff RD et al. pRb inactivation in mammary cells reveals common mechanisms for tumor initiation and progression in divergent epithelia. PLoS Biol 2004; 2: E22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 2006; 66: 7889–7898.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Z, Flesken-Nikitin A, Nikitin AY . Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 2007; 67: 5683–5690.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E . Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 1999; 81: 535–538.

    Article  CAS  PubMed  Google Scholar 

  20. Iwamoto M, Banerjee D, Menon LG, Jurkiewicz A, Rao PH, Kemeny NE et al. Overexpression of E2F-1 in lung and liver metastases of human colon cancer is associated with gene amplification. Cancer Biol Ther 2004; 3: 395–399.

    Article  CAS  PubMed  Google Scholar 

  21. Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A et al. Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 2004; 23: 5871–5879.

    Article  CAS  PubMed  Google Scholar 

  22. Cooper CS, Nicholson AG, Foster C, Dodson A, Edwards S, Fletcher A et al. Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer 2006; 54: 155–162.

    Article  PubMed  Google Scholar 

  23. Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A et al. Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 2004; 23: 1627–1630.

    Article  CAS  PubMed  Google Scholar 

  24. Grasemann C, Gratias S, Stephan H, Schuler A, Schramm A, Klein-Hitpass L et al. Gains and overexpression identify DEK and E2F3 as targets of chromosome 6p gains in retinoblastoma. Oncogene 2005; 24: 6441–6449.

    Article  CAS  PubMed  Google Scholar 

  25. Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R et al. E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 2004; 23: 5616–5623.

    Article  CAS  PubMed  Google Scholar 

  26. Orlic M, Spencer CE, Wang L, Gallie BL . Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosome Canc 2006; 45: 72–82.

    Article  CAS  Google Scholar 

  27. Hurst CD, Tomlinson DC, Williams SV, Platt FM, Knowles MA . Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene 2008; 27: 2716–2727.

    Article  CAS  PubMed  Google Scholar 

  28. Agger K, Santoni-Rugiu E, Holmberg C, Karlstrom O, Helin K . Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS. Oncogene 2005; 24: 780–789.

    Article  CAS  PubMed  Google Scholar 

  29. Conner EA, Lemmer ER, Omori M, Wirth PJ, Factor VM, Thorgeirsson SS . Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene 2000; 19: 5054–5062.

    Article  CAS  PubMed  Google Scholar 

  30. Lazzerini Denchi E, Attwooll C, Pasini D, Helin K . Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 2005; 25: 2660–2672.

    Article  PubMed  Google Scholar 

  31. Paulson QX, McArthur MJ, Johnson DG . E2F3a stimulates proliferation, p53-independent apoptosis and carcinogenesis in a transgenic mouse model. Cell Cycle 2006; 5: 184–190.

    Article  CAS  PubMed  Google Scholar 

  32. Scheijen B, Bronk M, van der Meer T, De Jong D, Bernards R . High incidence of thymic epithelial tumors in E2F2 transgenic mice. J Biol Chem 2004; 279: 10476–10483.

    Article  CAS  PubMed  Google Scholar 

  33. Ziebold U, Lee EY, Bronson RT, Lees JA . E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression of pituitary tumors but metastasis of medullary thyroid carcinomas. Mol Cell Biol 2003; 23: 6542–6552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baudino TA, Maclean KH, Brennan J, Parganas E, Yang C, Aslanian A et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 2003; 11: 905–914.

    Article  CAS  PubMed  Google Scholar 

  35. Opavsky R, Tsai SY, Guimond M, Arora A, Opavska J, Becknell B et al. Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proc Natl Acad Sci USA 2007; 104: 15400–15405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rempel RE, Mori S, Gasparetto M, Glozak MA, Andrechek ER, Adler SB et al. A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genet 2009; 5: e1000640.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pusapati RV, Weaks RL, Rounbehler RJ, McArthur MJ, Johnson DG . E2F2 suppresses Myc-induced proliferation and tumorigenesis. Mol Carcinogen 2010; 49: 152–156.

    CAS  Google Scholar 

  38. Rounbehler RJ, Rogers PM, Conti CJ, Johnson DG . Inactivation of E2f1 enhances tumorigenesis in a Myc transgenic model. Cancer Res 2002; 62: 3276–3281.

    CAS  PubMed  Google Scholar 

  39. Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR . Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 1997; 387: 422–426.

    Article  CAS  PubMed  Google Scholar 

  40. Leone G, Sears R, Huang E, Rempel R, Nuckolls F, Park CH et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol Cell 2001; 8: 105–113.

    Article  CAS  PubMed  Google Scholar 

  41. Yu Q, Geng Y, Sicinski P . Specific protection against breast cancers by cyclin D1 ablation. Nature 2001; 411: 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  42. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P . Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54: 105–115.

    Article  CAS  PubMed  Google Scholar 

  43. Sandgren EP, Schroeder JA, Qui TH, Palmiter RD, Brinster RL, Lee DC . Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 1995; 55: 3915–3927.

    CAS  PubMed  Google Scholar 

  44. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 1997; 25: 4323–4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  46. Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA . E2f3 is critical for normal cellular proliferation. Genes Dev 2000; 14: 690–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell 2000; 6: 729–735.

    Article  CAS  PubMed  Google Scholar 

  48. Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J et al. E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 2007; 27: 65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fujiwara K, Yuwanita I, Hollern DP, Andrechek ER . Prediction and genetic demonstration of a role for activator E2Fs in Myc-induced tumors. Cancer Res 2011; 71: 1924–1932.

    Article  CAS  PubMed  Google Scholar 

  50. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L Rawahneh, J Moffitt and N Lovett for technical assistance with histology. We also thank OSUCCC Shared Resources for microarray and nucleic acid. This work was funded by NIH grants to GL (R01CA85619, R01CA82259, R01HD047470, R01 CA121275; P01CA097189). GL is a Pew Charitable Trust Scholar and a Leukemia and Lymphoma Society Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., de Bruin, A., Wang, H. et al. Selective roles of E2Fs for ErbB2- and Myc-mediated mammary tumorigenesis. Oncogene 34, 119–128 (2015). https://doi.org/10.1038/onc.2013.511

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.511

Keywords

This article is cited by

Search

Quick links