Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1

Abstract

Prostate tumor overexpressed-1 (PTOV1), a modulator of the Mediator transcriptional regulatory complex, is expressed at high levels in prostate cancer and other neoplasias in association with a more aggressive disease. Here we show that PTOV1 interacts directly with receptor of activated protein C kinase 1 (RACK1), a regulator of protein kinase C and Jun signaling and also a component of the 40S ribosome. Consistent with this interaction, PTOV1 was associated with ribosomes and its overexpression promoted global protein synthesis in prostate cancer cells and COS-7 fibroblasts in a mTORC1-dependent manner. Transfection of ectopic PTOV1 enhanced the expression of c-Jun protein without affecting the levels of c-Jun or RACK1 mRNA. Conversely, knockdown of PTOV1 caused significant declines in global protein synthesis and c-Jun protein levels. High levels of PTOV1 stimulated the motility and invasiveness of prostate cancer cells, which required c-Jun, whereas knockdown of PTOV1 strongly inhibited the tumorigenic and metastatic potentials of PC-3 prostate cancer cells. In human prostate cancer samples, the expression of high levels of PTOV1 in primary and metastatic tumors was significantly associated with increased nuclear localization of active c-Jun. These results unveil new functions of PTOV1 in the regulation of protein translation and in the progression of prostate cancer to an invasive and metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Benedit P, Paciucci R, Thomson TM, Valeri M, Nadal M, Caceres C et al. PTOV1, a novel protein overexpressed in prostate cancer containing a new class of protein homology blocks. Oncogene 2001; 20: 1455–1464.

    Article  CAS  PubMed  Google Scholar 

  2. Santamaria A, Fernandez PL, Farre X, Benedit P, Reventos J, Morote J et al. PTOV-1, a novel protein overexpressed in prostate cancer, shuttles between the cytoplasm and the nucleus and promotes entry into the S phase of the cell division cycle. Am J Pathol 2003; 162: 897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernandez S, Mosquera JL, Alana L, Sanchez-Pla A, Morote J, Ramon YCS et al. PTOV1 is overexpressed in human high-grade malignant tumors. Virchows Arch 2010; 458: 323–330.

    Article  PubMed  Google Scholar 

  4. Mittler G, Stuhler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 2003; 22: 6494–6504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang F, DeBeaumont R, Zhou S, Naar AM . The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc Natl Acad Sci USA 2004; 101: 2339–2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vojnic E, Mourao A, Seizl M, Simon B, Wenzeck L, Lariviere L et al. Structure and VP16 binding of the Mediator Med25 activator interaction domain. Nat Struct Mol Biol 2011; 18: 404–409.

    Article  CAS  PubMed  Google Scholar 

  7. Milbradt AG, Kulkarni M, Yi T, Takeuchi K, Sun ZY, Luna RE et al. Structure of the VP16 transactivator target in the Mediator. Nat Struct Mol Biol 2011; 18: 410–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santamaria A, Castellanos E, Gomez V, Benedit P, Renau-Piqueras J, Morote J et al. PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol Cell Biol 2005; 25: 1900–1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benzinger A, Popowicz GM, Joy JK, Majumdar S, Holak TA, Hermeking H . The crystal structure of the non-liganded 14-3-3sigma protein: insights into determinants of isoform specific ligand binding and dimerization. Cell Res 2005; 15: 219–227.

    Article  CAS  PubMed  Google Scholar 

  10. Lee HK, Park UH, Kim EJ, Um SJ . MED25 is distinct from TRAP220/MED1 in cooperating with CBP for retinoid receptor activation. EMBO J. 2007; 26: 3545–3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D . Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 1994; 91: 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adams DR, Ron D, Kiely PA . RACK1, A multifaceted scaffolding protein: structure and function. Cell Commun Signal 2011; 9: 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hermanto U, Zong CS, Li W, Wang LH . RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 2002; 22: 2345–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiely PA, Sant A, O'Connor R . RACK1 is an insulin-like growth factor 1 (IGF-1) receptor-interacting protein that can regulate IGF-1-mediated Akt activation and protection from cell death. J Biol Chem 2002; 277: 22581–22589.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Zong CS, Hermanto U, Lopez-Bergami P, Ronai Z, Wang LH . RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol Cell Biol 2006; 26: 413–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z . RACK1 mediates activation of JNK by protein kinase C. Mol Cell 2005; 19: 309–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, Frank J . Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol 2004; 11: 957–962.

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson J, Sengupta J, Frank J, Nissen P . Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep 2004; 5: 1137–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruan Y, Sun L, Hao Y, Wang L, Xu J, Zhang W et al. Ribosomal RACK1 promotes chemoresistance and growth in human hepatocellular carcinoma. J Clin Invest 2012; 122: 2554–2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hovland R, Hesketh JE, Pryme IF . The compartmentalization of protein synthesis: importance of cytoskeleton and role in mRNA targeting. Int J Biochem Cell Biol 1996; 28: 1089–1105.

    Article  CAS  PubMed  Google Scholar 

  21. Chantrel Y, Gaisne M, Lions C, Verdiere J . The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 1998; 148: 559–569.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dresios J, Panopoulos P, Synetos D . Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59: 1651–1663.

    Article  CAS  PubMed  Google Scholar 

  23. Regmi S, Rothberg KG, Hubbard JG, Ruben L . The RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis. Mol Microbiol 2008; 70: 724–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grosso S, Volta V, Sala LA, Vietri M, Marchisio PC, Ron D et al. PKCbetaII modulates translation independently from mTOR and through RACK1. Biochem J. 2008; 415: 77–85.

    Article  CAS  PubMed  Google Scholar 

  25. Merrick WC . Cap-dependent and cap-independent translation in eukaryotic systems. Gene 2004; 332: 1–11.

    Article  CAS  PubMed  Google Scholar 

  26. Kozak M . Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361: 13–37.

    Article  CAS  PubMed  Google Scholar 

  27. Bilanges B, Argonza-Barrett R, Kolesnichenko M, Skinner C, Nair M, Chen M et al. Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Mol Cell Biol 2007; 27: 5746–5764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV . Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 2004; 279: 3327–3339.

    Article  CAS  PubMed  Google Scholar 

  29. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009; 7: e38.

    Article  PubMed  Google Scholar 

  30. Lopez T, Hanahan D . Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 2002; 1: 339–353.

    Article  CAS  PubMed  Google Scholar 

  31. Ozanne BW, Spence HJ, McGarry LC, Hennigan RF . Transcription factors control invasion: AP-1 the first among equals. Oncogene 2007; 26: 1–10.

    Article  CAS  PubMed  Google Scholar 

  32. Jiao X, Katiyar S, Willmarth NE, Liu M, Ma X, Flomenberg N et al. c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem 2010; 285: 8218–8226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malliri A, Symons M, Hennigan RF, Hurlstone AF, Lamb RF, Wheeler T et al. The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J Cell Biol 1998; 143: 1087–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petrak D, Memon SA, Birrer MJ, Ashwell JD, Zacharchuk CM . Dominant negative mutant of c-Jun inhibits NF-AT transcriptional activity and prevents IL-2 gene transcription. J Immunol 1994; 153: 2046–2051.

    CAS  PubMed  Google Scholar 

  35. Janulis M, Silberman S, Ambegaokar A, Gutkind JS, Schultz RM . Role of mitogen-activated protein kinases and c-Jun/AP-1 trans-activating activity in the regulation of protease mRNAs and the malignant phenotype in NIH 3T3 fibroblasts. J Biol Chem 1999; 274: 801–813.

    Article  CAS  PubMed  Google Scholar 

  36. Hong IK, Jin YJ, Byun HJ, Jeoung DI, Kim YM, Lee H . Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem 2006; 281: 24279–24292.

    Article  CAS  PubMed  Google Scholar 

  37. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  38. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  39. Stemmer V, de Craene B, Berx G, Behrens J . Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 2008; 27: 5075–5080.

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Kuiatse I, Lee AV, Pan J, Giuliano A, Cui X . Sustained c-Jun-NH2-kinase activity promotes epithelial-mesenchymal transition, invasion, and survival of breast cancer cells by regulating extracellular signal-regulated kinase activation. Mol Cancer Res 2010; 8: 266–277.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Liu Y, Xu Y, Voorhees JJ, Fisher GJ . UV irradiation induces Snail expression by AP-1 dependent mechanism in human skin keratinocytes. J Dermatol Sci 2010; 60: 105–113.

    Article  CAS  PubMed  Google Scholar 

  42. Buensuceso CS, Woodside D, Huff JL, Plopper GE, O'Toole TE . The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci 2001; 114 (Pt 9): 1691–1698.

    CAS  PubMed  Google Scholar 

  43. Coyle SM, Gilbert WV, Doudna JA . Direct link between RACK1 function and localization at the ribosome in vivo. Mol Cell Biol 2009; 29: 1626–1634.

    Article  CAS  PubMed  Google Scholar 

  44. Bontems F, Verger A, Dewitte F, Lens Z, Baert JL, Ferreira E et al. NMR structure of the human Mediator MED25 ACID domain. J Struct Biol 2010; 174: 245–251.

    Article  PubMed  Google Scholar 

  45. Zolotukhin AS, Uranishi H, Lindtner S, Bear J, Pavlakis GN, Felber BK . Nuclear export factor RBM15 facilitates the access of DBP5 to mRNA. Nucleic Acids Res 2009; 37: 7151–7162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 2009; 69: 3866–3873.

    Article  CAS  PubMed  Google Scholar 

  47. Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 2009; 100: 1393–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL . Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008; 27: 1919–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan L, Della Coletta L, Powell KL, Shen J, Thames H, Aldaz CM et al. Activation of the canonical Wnt/beta-catenin pathway in ATF3-induced mammary tumors. PLoS one 2011; 6: e16515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nateri AS, Spencer-Dene B, Behrens A . Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 2005; 437: 281–285.

    Article  CAS  PubMed  Google Scholar 

  51. Vesely PW, Staber PB, Hoefler G, Kenner L . Translational regulation mechanisms of AP-1 proteins. Mutat Res 2009; 682: 7–12.

    Article  CAS  PubMed  Google Scholar 

  52. Knirsh R, Ben-Dror I, Spangler B, Matthews GD, Kuphal S, Bosserhoff AK et al. Loss of E-cadherin-mediated cell-cell contacts activates a novel mechanism for up-regulation of the proto-oncogene c-Jun. Mol Biol Cell 2009; 20: 2121–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang J, Zhu F, Li X, Dong Z, Xu Y, Peng C et al. Rack1 protects N-terminal phosphorylated c-Jun from Fbw7-mediated degradation. Oncogene 2012; 31: 1835–1844.

    Article  CAS  PubMed  Google Scholar 

  54. Yang YM, Bost F, Charbono W, Dean N, McKay R, Rhim JS et al. C-Jun NH(2)-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clin Cancer Res 2003; 9: 391–401.

    CAS  PubMed  Google Scholar 

  55. Antonyak MA, Kenyon LC, Godwin AK, James DC, Emlet DR, Okamoto I et al. Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene 2002; 21: 5038–5046.

    Article  CAS  PubMed  Google Scholar 

  56. Diaz VM, Planaguma J, Thomson TM, Reventos J, Paciucci R . Tissue plasminogen activator is required for the growth, invasion, and angiogenesis of pancreatic tumor cells. Gastroenterology 2002; 122: 806–819.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Esquerra, T. Moliné and P. Guijarro for excellent technical help, J.J. Lozano for help with statistical analysis and J. Reventós for advice and support. This study was supported by Ministry of Science and Innovation and MINECO SAF2008-03936, SAF2011-30496, TV3 Telemarathon, and Instituto Carlos III RD06/0020/0058 RETICS (to RP); SAF2008-04136-C02-01 and SAF2011-24686 (to TMT); AGAUR 2009SGR1482 (to RP and TMT); Red Nacional de Biobancos, Instituto Carlos III (to RB); and Fondo de Investigaciones de la Seguridad Social PI20231 (to PLF).

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marqués, N., Sesé, M., Cánovas, V. et al. Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene 33, 1124–1134 (2014). https://doi.org/10.1038/onc.2013.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.51

Keywords

This article is cited by

Search

Quick links