Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion

Abstract

The epithelial–mesenchymal transition (EMT), a prerequisite for cancer progression and metastasis formation, is regulated not only at the transcriptional but also at the post-transcriptional level, including at the level of alternative pre-mRNA splicing. Several recent studies have highlighted the involvement of splicing factors, including epithelial splicing regulatory proteins (Esrps) and RNA-binding Fox protein 2 (Rbfox2), in this process. Esrps regulate epithelial-specific splicing, and their expression is downregulated during EMT. By contrast, the role of Rbfox2 is controversial because Rbfox2 regulates epithelial as well as mesenchymal splicing events. Here, we have used several established cell culture models to investigate the functions of Rbfox2 during EMT. We demonstrate that induction of an EMT upregulates the expression of Rbfox2, which correlates with an increase in Rbfox2-regulated splicing events in the cortactin (Cttn), Pard3 and dynamin 2 (Dnm2) transcripts. At the same time, however, the epithelial-specific ability to splice the Enah, Slk and Tsc2 transcripts is either reduced or lost completely by Rbfox2, which might be due, in part, to downregulation of the expression of the Esrps cooperative factors. Depletion of Rbfox2 during EMT did not prevent the activation of transforming growth factor-β signaling, the upregulation of mesenchymal markers or changes in cell morphology toward a mesenchymal phenotype. In addition, this depletion did not influence cell migration. However, depletion of Rbfox2 in cells that have completed an EMT significantly reduced their invasive potential. Taken together, our results suggest that during an EMT, Rbfox2-regulated splicing shifts from epithelial-to mesenchymal-specific events, leading to a higher degree of tissue invasiveness.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Yang J, Weinberg RA . Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14: 818–829.

    Article  CAS  PubMed  Google Scholar 

  2. Yilmaz M, Christofori G . EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009; 28: 15–33.

    Article  PubMed  Google Scholar 

  3. Biamonti G, Bonomi S, Gallo S, Ghigna C . Making alternative splicing decisions during epithelial-to-mesenchymal transition (EMT). Cell Mol Life Sci 2012; 69: 2515–2526.

    Article  CAS  PubMed  Google Scholar 

  4. Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD, Gage FH . An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 2009; 16: 130–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huh GS, Hynes RO . Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev 1994; 8: 1561–1574.

    Article  CAS  PubMed  Google Scholar 

  6. Underwood JG, Boutz PL, Dougherty JD, Stoilov P, Black DL . Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol 2005; 25: 10005–10016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang C, Zhang Z, Castle J, Sun S, Johnson J, Krainer AR et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev 2008; 22: 2550–2563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Modafferi EF, Black DL . A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol Cell Biol 1997; 17: 6537–6545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin Y, Suzuki H, Maegawa S, Endo H, Sugano S, Hashimoto K et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J 2003; 22: 905–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakahata S, Kawamoto S . Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res 2005; 33: 2078–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuroyanagi H . Fox-1 family of RNA-binding proteins. Cell Mol Life Sci 2009; 66: 3895–3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 2009; 16: 670–676.

    Article  CAS  PubMed  Google Scholar 

  13. Lapuk A, Marr H, Jakkula L, Pedro H, Bhattacharya S, Purdom E et al. Exon-level microarray analyses identify alternative splicing programs in breast cancer. Mol Cancer Res 2010; 8: 961–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM et al. Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics 2005; 86: 127–141.

    Article  CAS  PubMed  Google Scholar 

  15. Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011; 7: e1002218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2005; 20: 881–890.

    Article  CAS  PubMed  Google Scholar 

  17. Valacca C, Bonomi S, Buratti E, Pedrotti S, Baralle FE, Sette C et al. Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene. J Cell Biol 2010; 191: 87–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, Shen S et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 2010; 29: 3286–3300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP . ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33: 591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baraniak AP, Chen JR, Garcia-Blanco MA . Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol Cell Biol 2006; 26: 1209–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12: 27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miettinen PJ, Ebner R, Lopez AR, Derynck R . TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994; 127 (6 Part 2): 2021–2036.

    Article  CAS  PubMed  Google Scholar 

  23. Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J 2008; 27: 2603–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waldmeier L, Meyer-Schaller N, Diepenbruck M, Christofori G . Py2T murine breast cancer cells, a versatile model of TGFbeta-induced EMT in vitro and in vivo. PLoS One 2012; 7: e48651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Damianov A, Black DL . Autoregulation of Fox protein expression to produce dominant negative splicing factors. RNA 2010; 16: 405–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S et al. TGF-beta drives epithelial-mesenchymal transition through deltaEF1-mediated downregulation of ESRP. Oncogene 2012; 31: 3190–3201.

    Article  CAS  PubMed  Google Scholar 

  27. Kirkbride KC, Sung BH, Sinha S, Weaver AM . Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adhes Migration 2011; 5: 187–198.

    Article  Google Scholar 

  28. Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 2011; 13: 49–58.

    Article  CAS  PubMed  Google Scholar 

  29. Venables JP . Unbalanced alternative splicing and its significance in cancer. Bioessays 2006; 28: 378–386.

    Article  CAS  PubMed  Google Scholar 

  30. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 2011; 121: 1064–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng C, Sharp PA . Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol 2006; 26: 362–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moran-Jones K, Grindlay J, Jones M, Smith R, Norman JC . hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res 2009; 69: 9219–9227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goswami S, Philippar U, Sun D, Patsialou A, Avraham J, Wang W et al. Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin Exp Metastasis 2009; 26: 153–159.

    Article  CAS  PubMed  Google Scholar 

  34. Winter J, Lehmann T, Krauss S, Trockenbacher A, Kijas Z, Foerster J et al. Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing. Hum Genet 2004; 114: 541–552.

    Article  CAS  PubMed  Google Scholar 

  35. Kruchten AE, McNiven MA . Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 2006; 119 (Part 9): 1683–1690.

    Article  CAS  PubMed  Google Scholar 

  36. Eppinga RD, Krueger EW, Weller SG, Zhang L, Cao H, McNiven MA . Increased expression of the large GTPase dynamin 2 potentiates metastatic migration and invasion of pancreatic ductal carcinoma. Oncogene 2012; 31: 1228–1241.

    Article  CAS  PubMed  Google Scholar 

  37. Feng H, Liu KW, Guo P, Zhang P, Cheng T, McNiven MA et al. Dynamin 2 mediates PDGFRalpha-SHP-2-promoted glioblastoma growth and invasion. Oncogene 2012; 31: 2691–2702.

    Article  CAS  PubMed  Google Scholar 

  38. Oh S, Shin S, Janknecht R . ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta 2012; 1826: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS et al. FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene 2013; 32: 3798–3808.

    Article  CAS  PubMed  Google Scholar 

  40. Nishikawa Y, Miyazaki T, Nakashiro K, Yamagata H, Isokane M, Goda H et al. Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of beta-catenin. Oncol Rep 2011; 26: 587–592.

    CAS  PubMed  Google Scholar 

  41. Di Marcotullio L, Greco A, Mazza D, Canettieri G, Pietrosanti L, Infante P et al. Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene 2011; 30: 65–76.

    Article  CAS  PubMed  Google Scholar 

  42. Philippar U, Roussos ET, Oser M, Yamaguchi H, Kim HD, Giampieri S et al. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev Cell 2008; 15: 813–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lemasters KE, Blech-Hermoni Y, Stillwagon SJ, Vajda NA, Ladd AN . Loss of muscleblind-like 1 promotes invasive mesenchyme formation in endocardial cushions by stimulating autocrine TGFbeta3. BMC Dev Biol 2012; 12: 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO . Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. Oncogene 2008; 27: 5988–6001.

    Article  CAS  PubMed  Google Scholar 

  45. Massimi P, Zori P, Roberts S, Banks L . Differential regulation of cell-cell contact, invasion and anoikis by hScrib and hDlg in keratinocytes. PLoS One 2012; 7: e40279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roovers K, Wagner S, Storbeck CJ, O’Reilly P, Lo V, Northey JJ et al. The Ste20-like kinase SLK is required for ErbB2-driven breast cancer cell motility. Oncogene 2009; 28: 2839–2848.

    Article  CAS  PubMed  Google Scholar 

  47. Barnes EA, Kenerson HL, Mak BC, Yeung RS . The loss of tuberin promotes cell invasion through the ss-catenin pathway. Am J Respir Cell Mol Biol 2010; 43: 617–627.

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Radisky DC, Nelson CM, Zhang H, Fata JE, Roth RA et al. Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proc Natl Acad Sci USA 2006; 103: 4134–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reed J, Stone M, Beadnell T, Ryu Y, Griffin T, Schwertfeger K . Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CXCL1-dependent manner. PLoS One 2012; 7: e45877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wesche J, Haglund K, Haugsten E . Fibroblast growth factors and their receptors in cancer. Biochem J 2011; 437: 199–213.

    Article  CAS  PubMed  Google Scholar 

  51. Guo M, Liu W, Serra S, Asa S, Ezzat S . FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res 2012; 72: 2017–2027.

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda Y, Ueda J, Ishiwata T . Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. Pathol Res Int 2012; 2012: 574768.

    Article  Google Scholar 

  53. Jia YL, Shi L, Zhou JN, Fu CJ, Chen L, Yuan HF et al. Epimorphin promotes human hepatocellular carcinoma invasion and metastasis through activation of focal adhesion kinase/extracellular signal-regulated kinase/matrix metalloproteinase-9 axis. Hepatology 2011; 54: 1808–1818.

    Article  CAS  PubMed  Google Scholar 

  54. Hirata E, Yukinaga H, Kamioka Y, Arakawa Y, Miyamoto S, Okada T et al. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J Cell Sci 2012; 125 (Part 4): 858–868.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck Society. We are grateful to Rolf Kemler for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Winter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Braeutigam, C., Rago, L., Rolke, A. et al. The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 33, 1082–1092 (2014). https://doi.org/10.1038/onc.2013.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.50

Keywords

  • Rbfox2
  • epithelial–mesenchymal transition
  • EMT
  • alternative splicing

This article is cited by

Search

Quick links